Real Time Anomalous Trajectory Detection and Analysis
GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behavio...
Gespeichert in:
Veröffentlicht in: | Journal on special topics in mobile networks and applications 2013-06, Vol.18 (3), p.341-356 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 356 |
---|---|
container_issue | 3 |
container_start_page | 341 |
container_title | Journal on special topics in mobile networks and applications |
container_volume | 18 |
creator | Sun, Lin Zhang, Daqing Chen, Chao Castro, Pablo Samuel Li, Shijian Wang, Zonghui |
description | GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed
iBOAT
method. To achieve real time monitoring, we reduce the response time of
iBOAT
by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed. |
doi_str_mv | 10.1007/s11036-012-0417-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00831013v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372625877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCCHqIZpLNJnss9S8UBKngLaTZrG7JbmrSCv32ZtlSRPA0w8zvPWYeQudAboAQcRsBCCswAYpJDgLLAzQCLiiWwNlh6plkOC_K92N0EuOSEMK5zEeIv1rtsnnT2mzS-VY7v4nZPOilNWsfttmdXaeu8V2muyoh2m1jE0_RUa1dtGe7OkZvD_fz6ROevTw-TyczbHJgawyc5JWwC0JZSXlpRFUXpWA1tTVlwHlRECKrSnKgizKNoRKmtLaCnBFGuWFjdD34fmqnVqFpddgqrxv1NJmpfpb0DAiwb0js1cCugv_a2LhWbRONdU53Nj2lgAlaUC6FSOjFH3TpNyH91lM877mSJQoGygQfY7D1_gIgqg9dDaGrFLrqQ1cyaS53zjoa7eqgO9PEvZAKnrLgPHF04GJadR82_LrgX_MffomNGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354726293</pqid></control><display><type>article</type><title>Real Time Anomalous Trajectory Detection and Analysis</title><source>SpringerNature Journals</source><creator>Sun, Lin ; Zhang, Daqing ; Chen, Chao ; Castro, Pablo Samuel ; Li, Shijian ; Wang, Zonghui</creator><creatorcontrib>Sun, Lin ; Zhang, Daqing ; Chen, Chao ; Castro, Pablo Samuel ; Li, Shijian ; Wang, Zonghui</creatorcontrib><description>GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed
iBOAT
method. To achieve real time monitoring, we reduce the response time of
iBOAT
by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-012-0417-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Behavior ; Cellular telephones ; Communications Engineering ; Computer Communication Networks ; Computer Science ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Dynamical systems ; Dynamics ; Electrical Engineering ; Engineering ; Exact sciences and technology ; Fraud ; Global positioning systems ; GPS ; Human behavior ; IT in Business ; Journeys ; Memory organisation. Data processing ; Monitoring ; Networking and Internet Architecture ; Networks ; Passengers ; Real time ; Response time ; Sensors ; Software ; Studies ; Taxicabs ; Trajectories ; Travel</subject><ispartof>Journal on special topics in mobile networks and applications, 2013-06, Vol.18 (3), p.341-356</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</citedby><cites>FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</cites><orcidid>0000-0003-2094-9734 ; 0000-0002-4538-5632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-012-0417-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-012-0417-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,310,311,315,781,785,790,791,886,23934,23935,25144,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27502355$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00831013$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Castro, Pablo Samuel</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Wang, Zonghui</creatorcontrib><title>Real Time Anomalous Trajectory Detection and Analysis</title><title>Journal on special topics in mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed
iBOAT
method. To achieve real time monitoring, we reduce the response time of
iBOAT
by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed.</description><subject>Applied sciences</subject><subject>Behavior</subject><subject>Cellular telephones</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fraud</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Human behavior</subject><subject>IT in Business</subject><subject>Journeys</subject><subject>Memory organisation. Data processing</subject><subject>Monitoring</subject><subject>Networking and Internet Architecture</subject><subject>Networks</subject><subject>Passengers</subject><subject>Real time</subject><subject>Response time</subject><subject>Sensors</subject><subject>Software</subject><subject>Studies</subject><subject>Taxicabs</subject><subject>Trajectories</subject><subject>Travel</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCCHqIZpLNJnss9S8UBKngLaTZrG7JbmrSCv32ZtlSRPA0w8zvPWYeQudAboAQcRsBCCswAYpJDgLLAzQCLiiWwNlh6plkOC_K92N0EuOSEMK5zEeIv1rtsnnT2mzS-VY7v4nZPOilNWsfttmdXaeu8V2muyoh2m1jE0_RUa1dtGe7OkZvD_fz6ROevTw-TyczbHJgawyc5JWwC0JZSXlpRFUXpWA1tTVlwHlRECKrSnKgizKNoRKmtLaCnBFGuWFjdD34fmqnVqFpddgqrxv1NJmpfpb0DAiwb0js1cCugv_a2LhWbRONdU53Nj2lgAlaUC6FSOjFH3TpNyH91lM877mSJQoGygQfY7D1_gIgqg9dDaGrFLrqQ1cyaS53zjoa7eqgO9PEvZAKnrLgPHF04GJadR82_LrgX_MffomNGw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sun, Lin</creator><creator>Zhang, Daqing</creator><creator>Chen, Chao</creator><creator>Castro, Pablo Samuel</creator><creator>Li, Shijian</creator><creator>Wang, Zonghui</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2094-9734</orcidid><orcidid>https://orcid.org/0000-0002-4538-5632</orcidid></search><sort><creationdate>20130601</creationdate><title>Real Time Anomalous Trajectory Detection and Analysis</title><author>Sun, Lin ; Zhang, Daqing ; Chen, Chao ; Castro, Pablo Samuel ; Li, Shijian ; Wang, Zonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Behavior</topic><topic>Cellular telephones</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fraud</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Human behavior</topic><topic>IT in Business</topic><topic>Journeys</topic><topic>Memory organisation. Data processing</topic><topic>Monitoring</topic><topic>Networking and Internet Architecture</topic><topic>Networks</topic><topic>Passengers</topic><topic>Real time</topic><topic>Response time</topic><topic>Sensors</topic><topic>Software</topic><topic>Studies</topic><topic>Taxicabs</topic><topic>Trajectories</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Castro, Pablo Samuel</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Wang, Zonghui</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal on special topics in mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Lin</au><au>Zhang, Daqing</au><au>Chen, Chao</au><au>Castro, Pablo Samuel</au><au>Li, Shijian</au><au>Wang, Zonghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Time Anomalous Trajectory Detection and Analysis</atitle><jtitle>Journal on special topics in mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>18</volume><issue>3</issue><spage>341</spage><epage>356</epage><pages>341-356</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed
iBOAT
method. To achieve real time monitoring, we reduce the response time of
iBOAT
by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11036-012-0417-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2094-9734</orcidid><orcidid>https://orcid.org/0000-0002-4538-5632</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-469X |
ispartof | Journal on special topics in mobile networks and applications, 2013-06, Vol.18 (3), p.341-356 |
issn | 1383-469X 1572-8153 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00831013v1 |
source | SpringerNature Journals |
subjects | Applied sciences Behavior Cellular telephones Communications Engineering Computer Communication Networks Computer Science Computer science control theory systems Data processing. List processing. Character string processing Dynamical systems Dynamics Electrical Engineering Engineering Exact sciences and technology Fraud Global positioning systems GPS Human behavior IT in Business Journeys Memory organisation. Data processing Monitoring Networking and Internet Architecture Networks Passengers Real time Response time Sensors Software Studies Taxicabs Trajectories Travel |
title | Real Time Anomalous Trajectory Detection and Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Time%20Anomalous%20Trajectory%20Detection%20and%20Analysis&rft.jtitle=Journal%20on%20special%20topics%20in%20mobile%20networks%20and%20applications&rft.au=Sun,%20Lin&rft.date=2013-06-01&rft.volume=18&rft.issue=3&rft.spage=341&rft.epage=356&rft.pages=341-356&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-012-0417-8&rft_dat=%3Cproquest_hal_p%3E1372625877%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354726293&rft_id=info:pmid/&rfr_iscdi=true |