Real Time Anomalous Trajectory Detection and Analysis

GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal on special topics in mobile networks and applications 2013-06, Vol.18 (3), p.341-356
Hauptverfasser: Sun, Lin, Zhang, Daqing, Chen, Chao, Castro, Pablo Samuel, Li, Shijian, Wang, Zonghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 3
container_start_page 341
container_title Journal on special topics in mobile networks and applications
container_volume 18
creator Sun, Lin
Zhang, Daqing
Chen, Chao
Castro, Pablo Samuel
Li, Shijian
Wang, Zonghui
description GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed iBOAT method. To achieve real time monitoring, we reduce the response time of iBOAT by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed.
doi_str_mv 10.1007/s11036-012-0417-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00831013v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372625877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCCHqIZpLNJnss9S8UBKngLaTZrG7JbmrSCv32ZtlSRPA0w8zvPWYeQudAboAQcRsBCCswAYpJDgLLAzQCLiiWwNlh6plkOC_K92N0EuOSEMK5zEeIv1rtsnnT2mzS-VY7v4nZPOilNWsfttmdXaeu8V2muyoh2m1jE0_RUa1dtGe7OkZvD_fz6ROevTw-TyczbHJgawyc5JWwC0JZSXlpRFUXpWA1tTVlwHlRECKrSnKgizKNoRKmtLaCnBFGuWFjdD34fmqnVqFpddgqrxv1NJmpfpb0DAiwb0js1cCugv_a2LhWbRONdU53Nj2lgAlaUC6FSOjFH3TpNyH91lM877mSJQoGygQfY7D1_gIgqg9dDaGrFLrqQ1cyaS53zjoa7eqgO9PEvZAKnrLgPHF04GJadR82_LrgX_MffomNGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354726293</pqid></control><display><type>article</type><title>Real Time Anomalous Trajectory Detection and Analysis</title><source>SpringerNature Journals</source><creator>Sun, Lin ; Zhang, Daqing ; Chen, Chao ; Castro, Pablo Samuel ; Li, Shijian ; Wang, Zonghui</creator><creatorcontrib>Sun, Lin ; Zhang, Daqing ; Chen, Chao ; Castro, Pablo Samuel ; Li, Shijian ; Wang, Zonghui</creatorcontrib><description>GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed iBOAT method. To achieve real time monitoring, we reduce the response time of iBOAT by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-012-0417-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Behavior ; Cellular telephones ; Communications Engineering ; Computer Communication Networks ; Computer Science ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Dynamical systems ; Dynamics ; Electrical Engineering ; Engineering ; Exact sciences and technology ; Fraud ; Global positioning systems ; GPS ; Human behavior ; IT in Business ; Journeys ; Memory organisation. Data processing ; Monitoring ; Networking and Internet Architecture ; Networks ; Passengers ; Real time ; Response time ; Sensors ; Software ; Studies ; Taxicabs ; Trajectories ; Travel</subject><ispartof>Journal on special topics in mobile networks and applications, 2013-06, Vol.18 (3), p.341-356</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</citedby><cites>FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</cites><orcidid>0000-0003-2094-9734 ; 0000-0002-4538-5632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-012-0417-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-012-0417-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,310,311,315,781,785,790,791,886,23934,23935,25144,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27502355$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00831013$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Castro, Pablo Samuel</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Wang, Zonghui</creatorcontrib><title>Real Time Anomalous Trajectory Detection and Analysis</title><title>Journal on special topics in mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed iBOAT method. To achieve real time monitoring, we reduce the response time of iBOAT by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed.</description><subject>Applied sciences</subject><subject>Behavior</subject><subject>Cellular telephones</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fraud</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Human behavior</subject><subject>IT in Business</subject><subject>Journeys</subject><subject>Memory organisation. Data processing</subject><subject>Monitoring</subject><subject>Networking and Internet Architecture</subject><subject>Networks</subject><subject>Passengers</subject><subject>Real time</subject><subject>Response time</subject><subject>Sensors</subject><subject>Software</subject><subject>Studies</subject><subject>Taxicabs</subject><subject>Trajectories</subject><subject>Travel</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCCHqIZpLNJnss9S8UBKngLaTZrG7JbmrSCv32ZtlSRPA0w8zvPWYeQudAboAQcRsBCCswAYpJDgLLAzQCLiiWwNlh6plkOC_K92N0EuOSEMK5zEeIv1rtsnnT2mzS-VY7v4nZPOilNWsfttmdXaeu8V2muyoh2m1jE0_RUa1dtGe7OkZvD_fz6ROevTw-TyczbHJgawyc5JWwC0JZSXlpRFUXpWA1tTVlwHlRECKrSnKgizKNoRKmtLaCnBFGuWFjdD34fmqnVqFpddgqrxv1NJmpfpb0DAiwb0js1cCugv_a2LhWbRONdU53Nj2lgAlaUC6FSOjFH3TpNyH91lM877mSJQoGygQfY7D1_gIgqg9dDaGrFLrqQ1cyaS53zjoa7eqgO9PEvZAKnrLgPHF04GJadR82_LrgX_MffomNGw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sun, Lin</creator><creator>Zhang, Daqing</creator><creator>Chen, Chao</creator><creator>Castro, Pablo Samuel</creator><creator>Li, Shijian</creator><creator>Wang, Zonghui</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2094-9734</orcidid><orcidid>https://orcid.org/0000-0002-4538-5632</orcidid></search><sort><creationdate>20130601</creationdate><title>Real Time Anomalous Trajectory Detection and Analysis</title><author>Sun, Lin ; Zhang, Daqing ; Chen, Chao ; Castro, Pablo Samuel ; Li, Shijian ; Wang, Zonghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-1504d7eb0239259c7df6973f2ef2315566008dd8512b93f21d7c9eed1430325c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Behavior</topic><topic>Cellular telephones</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fraud</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Human behavior</topic><topic>IT in Business</topic><topic>Journeys</topic><topic>Memory organisation. Data processing</topic><topic>Monitoring</topic><topic>Networking and Internet Architecture</topic><topic>Networks</topic><topic>Passengers</topic><topic>Real time</topic><topic>Response time</topic><topic>Sensors</topic><topic>Software</topic><topic>Studies</topic><topic>Taxicabs</topic><topic>Trajectories</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Lin</creatorcontrib><creatorcontrib>Zhang, Daqing</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Castro, Pablo Samuel</creatorcontrib><creatorcontrib>Li, Shijian</creatorcontrib><creatorcontrib>Wang, Zonghui</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal on special topics in mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Lin</au><au>Zhang, Daqing</au><au>Chen, Chao</au><au>Castro, Pablo Samuel</au><au>Li, Shijian</au><au>Wang, Zonghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Time Anomalous Trajectory Detection and Analysis</atitle><jtitle>Journal on special topics in mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>18</volume><issue>3</issue><spage>341</spage><epage>356</epage><pages>341-356</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>GPS-equipped taxis can be considered as pervasive sensors and the large-scale digital traces produced allow us to reveal many hidden facts about the city dynamics and human behaviors. In this paper we present a novel GPS-based taxi system which can detect ongoing anomalous passenger delivery behaviors leveraging our proposed iBOAT method. To achieve real time monitoring, we reduce the response time of iBOAT by more than five times with an inverted index mechanism adopted. We evaluate the effectiveness of the system with large scale real life taxi GPS records while serving 200,000 taxis. With this system, we obtain about 0.44 million anomalous trajectories out of 7.35 million taxi delivery trips, which correspond to 7600 taxis’ GPS records in one month time in the city of Hangzhou, China. Through further analysis of these anomalous trajectories, we observe that: (1) Over 60 % of the anomalous trajectories are “detours” that travel longer distances and time than normal trajectories; (2) The average trip length of drivers with high-detour tendency is 20 % longer than that of normal drivers; (3) The length of anomalous sub-trajectories is usually less than a third of the entire trip, and they tend to begin in the first two thirds of the journey; (4) Although longer distance results in a greater taxi fare, a higher tendency to take anomalous detours does not result in higher monthly revenue; and (5) Taxis with a higher income usually spend less time finding new passengers and deliver them in faster speed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11036-012-0417-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2094-9734</orcidid><orcidid>https://orcid.org/0000-0002-4538-5632</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Journal on special topics in mobile networks and applications, 2013-06, Vol.18 (3), p.341-356
issn 1383-469X
1572-8153
language eng
recordid cdi_hal_primary_oai_HAL_hal_00831013v1
source SpringerNature Journals
subjects Applied sciences
Behavior
Cellular telephones
Communications Engineering
Computer Communication Networks
Computer Science
Computer science
control theory
systems
Data processing. List processing. Character string processing
Dynamical systems
Dynamics
Electrical Engineering
Engineering
Exact sciences and technology
Fraud
Global positioning systems
GPS
Human behavior
IT in Business
Journeys
Memory organisation. Data processing
Monitoring
Networking and Internet Architecture
Networks
Passengers
Real time
Response time
Sensors
Software
Studies
Taxicabs
Trajectories
Travel
title Real Time Anomalous Trajectory Detection and Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Time%20Anomalous%20Trajectory%20Detection%20and%20Analysis&rft.jtitle=Journal%20on%20special%20topics%20in%20mobile%20networks%20and%20applications&rft.au=Sun,%20Lin&rft.date=2013-06-01&rft.volume=18&rft.issue=3&rft.spage=341&rft.epage=356&rft.pages=341-356&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-012-0417-8&rft_dat=%3Cproquest_hal_p%3E1372625877%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354726293&rft_id=info:pmid/&rfr_iscdi=true