Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional M2Mo6Se6

We present electronic-structure calculations, electrical resistivity data, and the first specific-heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M=Tl,In,Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ∼170 K: electronic-structure calculations i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2010-12, Vol.82 (23)
Hauptverfasser: Petrovic, A.P., Lortz, R., Santi, G., Decroux, M., Monnard, H., Fischer, O., Boeri, L., Andersen, O.K., Kortus, J., Salloum, D., Gougeon, Patrick, Potel, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 82
creator Petrovic, A.P.
Lortz, R.
Santi, G.
Decroux, M.
Monnard, H.
Fischer, O.
Boeri, L.
Andersen, O.K.
Kortus, J.
Salloum, D.
Gougeon, Patrick
Potel, Michel
description We present electronic-structure calculations, electrical resistivity data, and the first specific-heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M=Tl,In,Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ∼170 K: electronic-structure calculations indicate that this is likely to be driven by the formation of a dynamical charge-density wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature, with superconducting transitions at Tc=4.2 K and 2.85 K, respectively. The absence of any metal-insulator transition in these materials is due to a larger in-plane bandwidth, leading to increased interchain hopping which suppresses the density wave instability. Electronic heat-capacity data for the superconducting compounds reveal an exceptionally low density of states DEF=0.055 states eV−1 atom−1, with BCS fits showing 2Δ/kBTc≥5 for Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modeling the lattice specific heat with a set of Einstein modes, we obtain the approximate phonon density of states F(ω). Deconvolving the resistivity for the two superconductors then yields their electron-phonon transport coupling function αtr2F(ω). In Tl2Mo6Se6 and In2Mo6Se6, F(ω) is dominated by an optical "guest ion" mode at ∼5 meV and a set of acoustic modes from ∼10 to 30 meV. Rb2Mo6Se6 exhibits a similar spectrum; however, the optical phonon has a lower intensity and is shifted to ∼8 meV. Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6 only displays significant coupling in the 10-18 meV range. Although pairing is clearly not mediated by the guest ion phonon, we believe it has a beneficial effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large coupling strength and higher Tc compared to In2Mo6Se6.
doi_str_mv 10.1103/PhysRevB.82.235128
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00825827v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00825827v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h119t-7e6f37a9241633d621aa484171929866da7117d85646a74712878418a010a263</originalsourceid><addsrcrecordid>eNotT01LwzAYDqLgnP4BT7kKy8ybtkl6nMMv2HDoDt7Ky5rZSJrUJhvu31udp-eTBx5CroFPAXh2u2oO8dXs76ZaTEVWgNAnZARFwdmg3k8HzkvNOAg4JxcxfnIOeZmLEfleNcEHT9tQGxo7s0l9iJvQHSbUuD_lWXesbMKuc9Z_TCj6mqbG0NYkdMz6uHOYQk9Tjz7aZIey9fRrh9Gy4A2rbWuGIHh0dCmWQb4ZeUnOtuiiufrHMVk_3K_nT2zx8vg8ny1YA1AmpozcZgpLkYPMsloKQMx1DgpKUWopa1QAqtaFzCWqXA3P1RBr5MBRyGxMbo6zDbqq622L_aEKaKun2aL69TjXotBC7SH7AY0rYX0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional M2Mo6Se6</title><source>American Physical Society Journals</source><creator>Petrovic, A.P. ; Lortz, R. ; Santi, G. ; Decroux, M. ; Monnard, H. ; Fischer, O. ; Boeri, L. ; Andersen, O.K. ; Kortus, J. ; Salloum, D. ; Gougeon, Patrick ; Potel, Michel</creator><creatorcontrib>Petrovic, A.P. ; Lortz, R. ; Santi, G. ; Decroux, M. ; Monnard, H. ; Fischer, O. ; Boeri, L. ; Andersen, O.K. ; Kortus, J. ; Salloum, D. ; Gougeon, Patrick ; Potel, Michel</creatorcontrib><description>We present electronic-structure calculations, electrical resistivity data, and the first specific-heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M=Tl,In,Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ∼170 K: electronic-structure calculations indicate that this is likely to be driven by the formation of a dynamical charge-density wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature, with superconducting transitions at Tc=4.2 K and 2.85 K, respectively. The absence of any metal-insulator transition in these materials is due to a larger in-plane bandwidth, leading to increased interchain hopping which suppresses the density wave instability. Electronic heat-capacity data for the superconducting compounds reveal an exceptionally low density of states DEF=0.055 states eV−1 atom−1, with BCS fits showing 2Δ/kBTc≥5 for Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modeling the lattice specific heat with a set of Einstein modes, we obtain the approximate phonon density of states F(ω). Deconvolving the resistivity for the two superconductors then yields their electron-phonon transport coupling function αtr2F(ω). In Tl2Mo6Se6 and In2Mo6Se6, F(ω) is dominated by an optical "guest ion" mode at ∼5 meV and a set of acoustic modes from ∼10 to 30 meV. Rb2Mo6Se6 exhibits a similar spectrum; however, the optical phonon has a lower intensity and is shifted to ∼8 meV. Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6 only displays significant coupling in the 10-18 meV range. Although pairing is clearly not mediated by the guest ion phonon, we believe it has a beneficial effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large coupling strength and higher Tc compared to In2Mo6Se6.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.82.235128</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2010-12, Vol.82 (23)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4778-5581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00825827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrovic, A.P.</creatorcontrib><creatorcontrib>Lortz, R.</creatorcontrib><creatorcontrib>Santi, G.</creatorcontrib><creatorcontrib>Decroux, M.</creatorcontrib><creatorcontrib>Monnard, H.</creatorcontrib><creatorcontrib>Fischer, O.</creatorcontrib><creatorcontrib>Boeri, L.</creatorcontrib><creatorcontrib>Andersen, O.K.</creatorcontrib><creatorcontrib>Kortus, J.</creatorcontrib><creatorcontrib>Salloum, D.</creatorcontrib><creatorcontrib>Gougeon, Patrick</creatorcontrib><creatorcontrib>Potel, Michel</creatorcontrib><title>Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional M2Mo6Se6</title><title>Physical review. B, Condensed matter and materials physics</title><description>We present electronic-structure calculations, electrical resistivity data, and the first specific-heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M=Tl,In,Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ∼170 K: electronic-structure calculations indicate that this is likely to be driven by the formation of a dynamical charge-density wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature, with superconducting transitions at Tc=4.2 K and 2.85 K, respectively. The absence of any metal-insulator transition in these materials is due to a larger in-plane bandwidth, leading to increased interchain hopping which suppresses the density wave instability. Electronic heat-capacity data for the superconducting compounds reveal an exceptionally low density of states DEF=0.055 states eV−1 atom−1, with BCS fits showing 2Δ/kBTc≥5 for Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modeling the lattice specific heat with a set of Einstein modes, we obtain the approximate phonon density of states F(ω). Deconvolving the resistivity for the two superconductors then yields their electron-phonon transport coupling function αtr2F(ω). In Tl2Mo6Se6 and In2Mo6Se6, F(ω) is dominated by an optical "guest ion" mode at ∼5 meV and a set of acoustic modes from ∼10 to 30 meV. Rb2Mo6Se6 exhibits a similar spectrum; however, the optical phonon has a lower intensity and is shifted to ∼8 meV. Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6 only displays significant coupling in the 10-18 meV range. Although pairing is clearly not mediated by the guest ion phonon, we believe it has a beneficial effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large coupling strength and higher Tc compared to In2Mo6Se6.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotT01LwzAYDqLgnP4BT7kKy8ybtkl6nMMv2HDoDt7Ky5rZSJrUJhvu31udp-eTBx5CroFPAXh2u2oO8dXs76ZaTEVWgNAnZARFwdmg3k8HzkvNOAg4JxcxfnIOeZmLEfleNcEHT9tQGxo7s0l9iJvQHSbUuD_lWXesbMKuc9Z_TCj6mqbG0NYkdMz6uHOYQk9Tjz7aZIey9fRrh9Gy4A2rbWuGIHh0dCmWQb4ZeUnOtuiiufrHMVk_3K_nT2zx8vg8ny1YA1AmpozcZgpLkYPMsloKQMx1DgpKUWopa1QAqtaFzCWqXA3P1RBr5MBRyGxMbo6zDbqq622L_aEKaKun2aL69TjXotBC7SH7AY0rYX0</recordid><startdate>20101221</startdate><enddate>20101221</enddate><creator>Petrovic, A.P.</creator><creator>Lortz, R.</creator><creator>Santi, G.</creator><creator>Decroux, M.</creator><creator>Monnard, H.</creator><creator>Fischer, O.</creator><creator>Boeri, L.</creator><creator>Andersen, O.K.</creator><creator>Kortus, J.</creator><creator>Salloum, D.</creator><creator>Gougeon, Patrick</creator><creator>Potel, Michel</creator><general>American Physical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4778-5581</orcidid></search><sort><creationdate>20101221</creationdate><title>Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional M2Mo6Se6</title><author>Petrovic, A.P. ; Lortz, R. ; Santi, G. ; Decroux, M. ; Monnard, H. ; Fischer, O. ; Boeri, L. ; Andersen, O.K. ; Kortus, J. ; Salloum, D. ; Gougeon, Patrick ; Potel, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h119t-7e6f37a9241633d621aa484171929866da7117d85646a74712878418a010a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, A.P.</creatorcontrib><creatorcontrib>Lortz, R.</creatorcontrib><creatorcontrib>Santi, G.</creatorcontrib><creatorcontrib>Decroux, M.</creatorcontrib><creatorcontrib>Monnard, H.</creatorcontrib><creatorcontrib>Fischer, O.</creatorcontrib><creatorcontrib>Boeri, L.</creatorcontrib><creatorcontrib>Andersen, O.K.</creatorcontrib><creatorcontrib>Kortus, J.</creatorcontrib><creatorcontrib>Salloum, D.</creatorcontrib><creatorcontrib>Gougeon, Patrick</creatorcontrib><creatorcontrib>Potel, Michel</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, A.P.</au><au>Lortz, R.</au><au>Santi, G.</au><au>Decroux, M.</au><au>Monnard, H.</au><au>Fischer, O.</au><au>Boeri, L.</au><au>Andersen, O.K.</au><au>Kortus, J.</au><au>Salloum, D.</au><au>Gougeon, Patrick</au><au>Potel, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional M2Mo6Se6</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2010-12-21</date><risdate>2010</risdate><volume>82</volume><issue>23</issue><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We present electronic-structure calculations, electrical resistivity data, and the first specific-heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M=Tl,In,Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ∼170 K: electronic-structure calculations indicate that this is likely to be driven by the formation of a dynamical charge-density wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature, with superconducting transitions at Tc=4.2 K and 2.85 K, respectively. The absence of any metal-insulator transition in these materials is due to a larger in-plane bandwidth, leading to increased interchain hopping which suppresses the density wave instability. Electronic heat-capacity data for the superconducting compounds reveal an exceptionally low density of states DEF=0.055 states eV−1 atom−1, with BCS fits showing 2Δ/kBTc≥5 for Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modeling the lattice specific heat with a set of Einstein modes, we obtain the approximate phonon density of states F(ω). Deconvolving the resistivity for the two superconductors then yields their electron-phonon transport coupling function αtr2F(ω). In Tl2Mo6Se6 and In2Mo6Se6, F(ω) is dominated by an optical "guest ion" mode at ∼5 meV and a set of acoustic modes from ∼10 to 30 meV. Rb2Mo6Se6 exhibits a similar spectrum; however, the optical phonon has a lower intensity and is shifted to ∼8 meV. Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6 only displays significant coupling in the 10-18 meV range. Although pairing is clearly not mediated by the guest ion phonon, we believe it has a beneficial effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large coupling strength and higher Tc compared to In2Mo6Se6.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.82.235128</doi><orcidid>https://orcid.org/0000-0003-4778-5581</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2010-12, Vol.82 (23)
issn 1098-0121
1550-235X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00825827v1
source American Physical Society Journals
subjects Chemical Sciences
Material chemistry
title Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional M2Mo6Se6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonon%20mode%20spectroscopy,%20electron-phonon%20coupling,%20and%20the%20metal-insulator%20transition%20in%20quasi-one-dimensional%20M2Mo6Se6&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Petrovic,%20A.P.&rft.date=2010-12-21&rft.volume=82&rft.issue=23&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.82.235128&rft_dat=%3Chal%3Eoai_HAL_hal_00825827v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true