Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics
► Arlequin coupling performed for beam/3D models for structural dynamic. ► Displacement continuity with multi-scale/heterogeneous time integrators strategies. ► No energy dissipation in the overlapping zones. ► Convergence order: 1–2, as a function of time steps and Newmark’s parameters. ► Efficienc...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2013-02, Vol.254, p.292-308 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | |
container_start_page | 292 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 254 |
creator | Ghanem, A. Torkhani, M. Mahjoubi, N. Baranger, T.N. Combescure, A. |
description | ► Arlequin coupling performed for beam/3D models for structural dynamic. ► Displacement continuity with multi-scale/heterogeneous time integrators strategies. ► No energy dissipation in the overlapping zones. ► Convergence order: 1–2, as a function of time steps and Newmark’s parameters. ► Efficiency/robustness of the method for low and high frequency loading.
This paper presents a general framework for performing spatio-temporal multi-scale/multi-model coupling. Based on displacement continuity, this approach guarantees a global energy balance of the system in the context of the Arlequin method. It introduces specific interpolation of the Lagrange multipliers and parameters of time integration operators in the overlapping zone. A dual Schur implementation is then used. To illustrate the efficiency and robustness of the method, convergence analysis with numerical experiments is performed. Finally, 1D–1D and 2D–1D coupling applications are presented in which each subdomain is integrated in time, using different time steps and different schemes. This approach gives the user more ways of controlling computational behaviour via Newmark parameters, time steps and sizing the overlapping zones. |
doi_str_mv | 10.1016/j.cma.2012.08.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00824399v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251200271X</els_id><sourcerecordid>1365114842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2e0a491416e991d56beee1d3230023703014c8eb55a7999acdc8ac8f9c7c8da83</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBBILIEP4OYjSMzEbc_DFqdVFAjSSlzgbDl2T-LFM05sT6L9e7y7EUf60uruqpKqi5CPwFpgMFzuWzubljPgLZMtA_WKbECOquEg5GuyYazrm1Hy_i15l_Oe1ZLAN-SwTQEfV7_QKZkZn2P6Q6eY6LyG4ps5OgxfXobiZ6TZmoDULI7eY8EU73DBuGZ6Ovql4F0yJaZ8EsklrbasyQRaklmyx6VQd1jM7G1-T95MJmT88NIvyO9v17-ubprdz-8_rra7xoqhKw1HZjoFHQyoFLh-uEVEcIILxrgYmWDQWYm3fW9GpZSxzkpj5aTsaKUzUlyQz2fdexP0Q_KzSQcdjdc3250-7uoneCeUeoKK_XTGPqT4uGIuevbZYgjm5FKDGHqATna8QuEMtSnmnHD6pw1MHyPRe10j0cdINJO6RlI5X88crH6fPCadbf2JRecT2qJd9P9h_wVV6ZYL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365114842</pqid></control><display><type>article</type><title>Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ghanem, A. ; Torkhani, M. ; Mahjoubi, N. ; Baranger, T.N. ; Combescure, A.</creator><creatorcontrib>Ghanem, A. ; Torkhani, M. ; Mahjoubi, N. ; Baranger, T.N. ; Combescure, A.</creatorcontrib><description>► Arlequin coupling performed for beam/3D models for structural dynamic. ► Displacement continuity with multi-scale/heterogeneous time integrators strategies. ► No energy dissipation in the overlapping zones. ► Convergence order: 1–2, as a function of time steps and Newmark’s parameters. ► Efficiency/robustness of the method for low and high frequency loading.
This paper presents a general framework for performing spatio-temporal multi-scale/multi-model coupling. Based on displacement continuity, this approach guarantees a global energy balance of the system in the context of the Arlequin method. It introduces specific interpolation of the Lagrange multipliers and parameters of time integration operators in the overlapping zone. A dual Schur implementation is then used. To illustrate the efficiency and robustness of the method, convergence analysis with numerical experiments is performed. Finally, 1D–1D and 2D–1D coupling applications are presented in which each subdomain is integrated in time, using different time steps and different schemes. This approach gives the user more ways of controlling computational behaviour via Newmark parameters, time steps and sizing the overlapping zones.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2012.08.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Arlequin method ; Continuity ; Convergence ; Dynamics ; Engineering Sciences ; Heterogeneous time integrators ; Interpolation ; Joining ; Mathematical models ; Mechanics ; Multi-scales ; Multi-schemes ; Newmark scheme ; Physics ; Robustness ; Solid mechanics ; Structural dynamics ; Structural mechanics ; Time integration</subject><ispartof>Computer methods in applied mechanics and engineering, 2013-02, Vol.254, p.292-308</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2e0a491416e991d56beee1d3230023703014c8eb55a7999acdc8ac8f9c7c8da83</citedby><cites>FETCH-LOGICAL-c364t-2e0a491416e991d56beee1d3230023703014c8eb55a7999acdc8ac8f9c7c8da83</cites><orcidid>0000-0003-3693-094X ; 0000-0002-3460-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2012.08.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00824399$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghanem, A.</creatorcontrib><creatorcontrib>Torkhani, M.</creatorcontrib><creatorcontrib>Mahjoubi, N.</creatorcontrib><creatorcontrib>Baranger, T.N.</creatorcontrib><creatorcontrib>Combescure, A.</creatorcontrib><title>Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics</title><title>Computer methods in applied mechanics and engineering</title><description>► Arlequin coupling performed for beam/3D models for structural dynamic. ► Displacement continuity with multi-scale/heterogeneous time integrators strategies. ► No energy dissipation in the overlapping zones. ► Convergence order: 1–2, as a function of time steps and Newmark’s parameters. ► Efficiency/robustness of the method for low and high frequency loading.
This paper presents a general framework for performing spatio-temporal multi-scale/multi-model coupling. Based on displacement continuity, this approach guarantees a global energy balance of the system in the context of the Arlequin method. It introduces specific interpolation of the Lagrange multipliers and parameters of time integration operators in the overlapping zone. A dual Schur implementation is then used. To illustrate the efficiency and robustness of the method, convergence analysis with numerical experiments is performed. Finally, 1D–1D and 2D–1D coupling applications are presented in which each subdomain is integrated in time, using different time steps and different schemes. This approach gives the user more ways of controlling computational behaviour via Newmark parameters, time steps and sizing the overlapping zones.</description><subject>Arlequin method</subject><subject>Continuity</subject><subject>Convergence</subject><subject>Dynamics</subject><subject>Engineering Sciences</subject><subject>Heterogeneous time integrators</subject><subject>Interpolation</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Multi-scales</subject><subject>Multi-schemes</subject><subject>Newmark scheme</subject><subject>Physics</subject><subject>Robustness</subject><subject>Solid mechanics</subject><subject>Structural dynamics</subject><subject>Structural mechanics</subject><subject>Time integration</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UctuFDEQtBBILIEP4OYjSMzEbc_DFqdVFAjSSlzgbDl2T-LFM05sT6L9e7y7EUf60uruqpKqi5CPwFpgMFzuWzubljPgLZMtA_WKbECOquEg5GuyYazrm1Hy_i15l_Oe1ZLAN-SwTQEfV7_QKZkZn2P6Q6eY6LyG4ps5OgxfXobiZ6TZmoDULI7eY8EU73DBuGZ6Ovql4F0yJaZ8EsklrbasyQRaklmyx6VQd1jM7G1-T95MJmT88NIvyO9v17-ubprdz-8_rra7xoqhKw1HZjoFHQyoFLh-uEVEcIILxrgYmWDQWYm3fW9GpZSxzkpj5aTsaKUzUlyQz2fdexP0Q_KzSQcdjdc3250-7uoneCeUeoKK_XTGPqT4uGIuevbZYgjm5FKDGHqATna8QuEMtSnmnHD6pw1MHyPRe10j0cdINJO6RlI5X88crH6fPCadbf2JRecT2qJd9P9h_wVV6ZYL</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Ghanem, A.</creator><creator>Torkhani, M.</creator><creator>Mahjoubi, N.</creator><creator>Baranger, T.N.</creator><creator>Combescure, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3693-094X</orcidid><orcidid>https://orcid.org/0000-0002-3460-4844</orcidid></search><sort><creationdate>20130201</creationdate><title>Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics</title><author>Ghanem, A. ; Torkhani, M. ; Mahjoubi, N. ; Baranger, T.N. ; Combescure, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2e0a491416e991d56beee1d3230023703014c8eb55a7999acdc8ac8f9c7c8da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arlequin method</topic><topic>Continuity</topic><topic>Convergence</topic><topic>Dynamics</topic><topic>Engineering Sciences</topic><topic>Heterogeneous time integrators</topic><topic>Interpolation</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Multi-scales</topic><topic>Multi-schemes</topic><topic>Newmark scheme</topic><topic>Physics</topic><topic>Robustness</topic><topic>Solid mechanics</topic><topic>Structural dynamics</topic><topic>Structural mechanics</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanem, A.</creatorcontrib><creatorcontrib>Torkhani, M.</creatorcontrib><creatorcontrib>Mahjoubi, N.</creatorcontrib><creatorcontrib>Baranger, T.N.</creatorcontrib><creatorcontrib>Combescure, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanem, A.</au><au>Torkhani, M.</au><au>Mahjoubi, N.</au><au>Baranger, T.N.</au><au>Combescure, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>254</volume><spage>292</spage><epage>308</epage><pages>292-308</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>► Arlequin coupling performed for beam/3D models for structural dynamic. ► Displacement continuity with multi-scale/heterogeneous time integrators strategies. ► No energy dissipation in the overlapping zones. ► Convergence order: 1–2, as a function of time steps and Newmark’s parameters. ► Efficiency/robustness of the method for low and high frequency loading.
This paper presents a general framework for performing spatio-temporal multi-scale/multi-model coupling. Based on displacement continuity, this approach guarantees a global energy balance of the system in the context of the Arlequin method. It introduces specific interpolation of the Lagrange multipliers and parameters of time integration operators in the overlapping zone. A dual Schur implementation is then used. To illustrate the efficiency and robustness of the method, convergence analysis with numerical experiments is performed. Finally, 1D–1D and 2D–1D coupling applications are presented in which each subdomain is integrated in time, using different time steps and different schemes. This approach gives the user more ways of controlling computational behaviour via Newmark parameters, time steps and sizing the overlapping zones.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2012.08.019</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3693-094X</orcidid><orcidid>https://orcid.org/0000-0002-3460-4844</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2013-02, Vol.254, p.292-308 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00824399v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Arlequin method Continuity Convergence Dynamics Engineering Sciences Heterogeneous time integrators Interpolation Joining Mathematical models Mechanics Multi-scales Multi-schemes Newmark scheme Physics Robustness Solid mechanics Structural dynamics Structural mechanics Time integration |
title | Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arlequin%20framework%20for%20multi-model,%20multi-time%20scale%20and%20heterogeneous%20time%20integrators%20for%20structural%20transient%20dynamics&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ghanem,%20A.&rft.date=2013-02-01&rft.volume=254&rft.spage=292&rft.epage=308&rft.pages=292-308&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2012.08.019&rft_dat=%3Cproquest_hal_p%3E1365114842%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365114842&rft_id=info:pmid/&rft_els_id=S004578251200271X&rfr_iscdi=true |