Sliding invariant and classification of singular holomorphic foliations in the plane

By introducing a new invariant called the set of slidings, we give a complete strict classification of the class of germs of non-dicritical holomorphic foliations in the plan whose Camacho-Sad indices are not rational. Moreover, we will show that, in this class, the new invariant is finitely determi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Fourier 2015, Vol.tome 65 (5), p.1897-1920
1. Verfasser: Truong, Hong Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1920
container_issue 5
container_start_page 1897
container_title Annales de l'Institut Fourier
container_volume tome 65
creator Truong, Hong Minh
description By introducing a new invariant called the set of slidings, we give a complete strict classification of the class of germs of non-dicritical holomorphic foliations in the plan whose Camacho-Sad indices are not rational. Moreover, we will show that, in this class, the new invariant is finitely determined. Consequently, the finite determination of the class of isoholonomy non-dicritical foliations and absolutely dicritical foliations that have the same Dulac maps are proved.
doi_str_mv 10.5802/aif.2976
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00815102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00815102v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00815102v13</originalsourceid><addsrcrecordid>eNqVy8GKwjAUheEgCtaZAR_hbmdRvWknjV0Og-LCne7LpTb2SpqUpAq-_aj4Aq4O_HxHiLnEhVphtiQ2i6zUxUgkUmudqlziWCSY6zzFUhVTMYvxjCjLHyUTcdhbPrI7AbsrBSY3ALkj1JZiZMM1DewdeAPxji6WArTe-s6HvuUajLf8FPH-h6FtoLfkmk8xMWRj8_XaD_G9WR_-tmlLtuoDdxRulSeutr-76tEQV1JJzK4yf8f-A7c6Sg8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sliding invariant and classification of singular holomorphic foliations in the plane</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>Truong, Hong Minh</creator><creatorcontrib>Truong, Hong Minh</creatorcontrib><description>By introducing a new invariant called the set of slidings, we give a complete strict classification of the class of germs of non-dicritical holomorphic foliations in the plan whose Camacho-Sad indices are not rational. Moreover, we will show that, in this class, the new invariant is finitely determined. Consequently, the finite determination of the class of isoholonomy non-dicritical foliations and absolutely dicritical foliations that have the same Dulac maps are proved.</description><identifier>ISSN: 0373-0956</identifier><identifier>EISSN: 1777-5310</identifier><identifier>DOI: 10.5802/aif.2976</identifier><language>eng</language><publisher>Association des Annales de l'Institut Fourier</publisher><subject>Dynamical Systems ; Mathematics</subject><ispartof>Annales de l'Institut Fourier, 2015, Vol.tome 65 (5), p.1897-1920</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00815102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, Hong Minh</creatorcontrib><title>Sliding invariant and classification of singular holomorphic foliations in the plane</title><title>Annales de l'Institut Fourier</title><description>By introducing a new invariant called the set of slidings, we give a complete strict classification of the class of germs of non-dicritical holomorphic foliations in the plan whose Camacho-Sad indices are not rational. Moreover, we will show that, in this class, the new invariant is finitely determined. Consequently, the finite determination of the class of isoholonomy non-dicritical foliations and absolutely dicritical foliations that have the same Dulac maps are proved.</description><subject>Dynamical Systems</subject><subject>Mathematics</subject><issn>0373-0956</issn><issn>1777-5310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVy8GKwjAUheEgCtaZAR_hbmdRvWknjV0Og-LCne7LpTb2SpqUpAq-_aj4Aq4O_HxHiLnEhVphtiQ2i6zUxUgkUmudqlziWCSY6zzFUhVTMYvxjCjLHyUTcdhbPrI7AbsrBSY3ALkj1JZiZMM1DewdeAPxji6WArTe-s6HvuUajLf8FPH-h6FtoLfkmk8xMWRj8_XaD_G9WR_-tmlLtuoDdxRulSeutr-76tEQV1JJzK4yf8f-A7c6Sg8</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Truong, Hong Minh</creator><general>Association des Annales de l'Institut Fourier</general><scope>1XC</scope></search><sort><creationdate>2015</creationdate><title>Sliding invariant and classification of singular holomorphic foliations in the plane</title><author>Truong, Hong Minh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00815102v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dynamical Systems</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, Hong Minh</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annales de l'Institut Fourier</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, Hong Minh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding invariant and classification of singular holomorphic foliations in the plane</atitle><jtitle>Annales de l'Institut Fourier</jtitle><date>2015</date><risdate>2015</risdate><volume>tome 65</volume><issue>5</issue><spage>1897</spage><epage>1920</epage><pages>1897-1920</pages><issn>0373-0956</issn><eissn>1777-5310</eissn><abstract>By introducing a new invariant called the set of slidings, we give a complete strict classification of the class of germs of non-dicritical holomorphic foliations in the plan whose Camacho-Sad indices are not rational. Moreover, we will show that, in this class, the new invariant is finitely determined. Consequently, the finite determination of the class of isoholonomy non-dicritical foliations and absolutely dicritical foliations that have the same Dulac maps are proved.</abstract><pub>Association des Annales de l'Institut Fourier</pub><doi>10.5802/aif.2976</doi></addata></record>
fulltext fulltext
identifier ISSN: 0373-0956
ispartof Annales de l'Institut Fourier, 2015, Vol.tome 65 (5), p.1897-1920
issn 0373-0956
1777-5310
language eng
recordid cdi_hal_primary_oai_HAL_hal_00815102v1
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; NUMDAM
subjects Dynamical Systems
Mathematics
title Sliding invariant and classification of singular holomorphic foliations in the plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20invariant%20and%20classification%20of%20singular%20holomorphic%20foliations%20in%20the%20plane&rft.jtitle=Annales%20de%20l'Institut%20Fourier&rft.au=Truong,%20Hong%20Minh&rft.date=2015&rft.volume=tome%2065&rft.issue=5&rft.spage=1897&rft.epage=1920&rft.pages=1897-1920&rft.issn=0373-0956&rft.eissn=1777-5310&rft_id=info:doi/10.5802/aif.2976&rft_dat=%3Chal%3Eoai_HAL_hal_00815102v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true