The distribution of cycles in breakpoint graphs of signed permutations
Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the dis...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2013-07, Vol.161 (10-11), p.1448-1466 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1466 |
---|---|
container_issue | 10-11 |
container_start_page | 1448 |
container_title | Discrete Applied Mathematics |
container_volume | 161 |
creator | Grusea, Simona Labarre, Anthony |
description | Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results. |
doi_str_mv | 10.1016/j.dam.2013.02.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00809299v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13000541</els_id><sourcerecordid>1567075702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbj1CIcWO_2TVJzQBAxpEpchcYvSxGUZXVuSbhLfnlZDHDlZtn_vWX6MXSMkCFjcbROrdwkHTBPgCQA_YTOUgseFEHjKZiNTxBzl-zm7CGELADh2M_a03lBkXRi8q_aD69qoqyPzbRoKkWujypP-7DvXDtGH1_0mTOvgPlqyUU9-tx_0JAqX7KzWTaCr3zpnb0-P68UyXr0-vyweVrHJQAwxl2maZlle8ZIjGFmktuC2IhSQSVnkJAqRAVY1oeU2K2uQWpclZrWlPJcynbPbo-9GN6r3bqf9t-q0U8uHlZpmABJKXpYHHNmbI9v77mtPYVA7Fww1jW6p2weFeSFA5AL4iOIRNb4LwVP9542gpnzVVo35qilfBXy8Mmnujxoa_z048ioYR60h6zyZQdnO_aP-AdjFgQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567075702</pqid></control><display><type>article</type><title>The distribution of cycles in breakpoint graphs of signed permutations</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Grusea, Simona ; Labarre, Anthony</creator><creatorcontrib>Grusea, Simona ; Labarre, Anthony</creatorcontrib><description>Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.02.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bioinformatics ; Combinatorics ; Computation ; Computer Science ; Decomposition ; Discrete Mathematics ; Genome rearrangement ; Genomes ; Graphs ; Hultman number ; Life Sciences ; Mathematical models ; Mathematics ; Permutation ; Permutations ; Probability ; Proving ; Quantitative Methods ; Variance</subject><ispartof>Discrete Applied Mathematics, 2013-07, Vol.161 (10-11), p.1448-1466</ispartof><rights>2013 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</citedby><cites>FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</cites><orcidid>0000-0002-9945-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2013.02.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00809299$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grusea, Simona</creatorcontrib><creatorcontrib>Labarre, Anthony</creatorcontrib><title>The distribution of cycles in breakpoint graphs of signed permutations</title><title>Discrete Applied Mathematics</title><description>Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results.</description><subject>Bioinformatics</subject><subject>Combinatorics</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Discrete Mathematics</subject><subject>Genome rearrangement</subject><subject>Genomes</subject><subject>Graphs</subject><subject>Hultman number</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Permutation</subject><subject>Permutations</subject><subject>Probability</subject><subject>Proving</subject><subject>Quantitative Methods</subject><subject>Variance</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbj1CIcWO_2TVJzQBAxpEpchcYvSxGUZXVuSbhLfnlZDHDlZtn_vWX6MXSMkCFjcbROrdwkHTBPgCQA_YTOUgseFEHjKZiNTxBzl-zm7CGELADh2M_a03lBkXRi8q_aD69qoqyPzbRoKkWujypP-7DvXDtGH1_0mTOvgPlqyUU9-tx_0JAqX7KzWTaCr3zpnb0-P68UyXr0-vyweVrHJQAwxl2maZlle8ZIjGFmktuC2IhSQSVnkJAqRAVY1oeU2K2uQWpclZrWlPJcynbPbo-9GN6r3bqf9t-q0U8uHlZpmABJKXpYHHNmbI9v77mtPYVA7Fww1jW6p2weFeSFA5AL4iOIRNb4LwVP9542gpnzVVo35qilfBXy8Mmnujxoa_z048ioYR60h6zyZQdnO_aP-AdjFgQo</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Grusea, Simona</creator><creator>Labarre, Anthony</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9945-6774</orcidid></search><sort><creationdate>20130701</creationdate><title>The distribution of cycles in breakpoint graphs of signed permutations</title><author>Grusea, Simona ; Labarre, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioinformatics</topic><topic>Combinatorics</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Discrete Mathematics</topic><topic>Genome rearrangement</topic><topic>Genomes</topic><topic>Graphs</topic><topic>Hultman number</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Permutation</topic><topic>Permutations</topic><topic>Probability</topic><topic>Proving</topic><topic>Quantitative Methods</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grusea, Simona</creatorcontrib><creatorcontrib>Labarre, Anthony</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grusea, Simona</au><au>Labarre, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The distribution of cycles in breakpoint graphs of signed permutations</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>161</volume><issue>10-11</issue><spage>1448</spage><epage>1466</epage><pages>1448-1466</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.02.002</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9945-6774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2013-07, Vol.161 (10-11), p.1448-1466 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00809299v1 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Bioinformatics Combinatorics Computation Computer Science Decomposition Discrete Mathematics Genome rearrangement Genomes Graphs Hultman number Life Sciences Mathematical models Mathematics Permutation Permutations Probability Proving Quantitative Methods Variance |
title | The distribution of cycles in breakpoint graphs of signed permutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20distribution%20of%20cycles%20in%20breakpoint%20graphs%20of%20signed%20permutations&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Grusea,%20Simona&rft.date=2013-07-01&rft.volume=161&rft.issue=10-11&rft.spage=1448&rft.epage=1466&rft.pages=1448-1466&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.02.002&rft_dat=%3Cproquest_hal_p%3E1567075702%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567075702&rft_id=info:pmid/&rft_els_id=S0166218X13000541&rfr_iscdi=true |