The distribution of cycles in breakpoint graphs of signed permutations

Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2013-07, Vol.161 (10-11), p.1448-1466
Hauptverfasser: Grusea, Simona, Labarre, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1466
container_issue 10-11
container_start_page 1448
container_title Discrete Applied Mathematics
container_volume 161
creator Grusea, Simona
Labarre, Anthony
description Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results.
doi_str_mv 10.1016/j.dam.2013.02.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00809299v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13000541</els_id><sourcerecordid>1567075702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbj1CIcWO_2TVJzQBAxpEpchcYvSxGUZXVuSbhLfnlZDHDlZtn_vWX6MXSMkCFjcbROrdwkHTBPgCQA_YTOUgseFEHjKZiNTxBzl-zm7CGELADh2M_a03lBkXRi8q_aD69qoqyPzbRoKkWujypP-7DvXDtGH1_0mTOvgPlqyUU9-tx_0JAqX7KzWTaCr3zpnb0-P68UyXr0-vyweVrHJQAwxl2maZlle8ZIjGFmktuC2IhSQSVnkJAqRAVY1oeU2K2uQWpclZrWlPJcynbPbo-9GN6r3bqf9t-q0U8uHlZpmABJKXpYHHNmbI9v77mtPYVA7Fww1jW6p2weFeSFA5AL4iOIRNb4LwVP9542gpnzVVo35qilfBXy8Mmnujxoa_z048ioYR60h6zyZQdnO_aP-AdjFgQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567075702</pqid></control><display><type>article</type><title>The distribution of cycles in breakpoint graphs of signed permutations</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Grusea, Simona ; Labarre, Anthony</creator><creatorcontrib>Grusea, Simona ; Labarre, Anthony</creatorcontrib><description>Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.02.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bioinformatics ; Combinatorics ; Computation ; Computer Science ; Decomposition ; Discrete Mathematics ; Genome rearrangement ; Genomes ; Graphs ; Hultman number ; Life Sciences ; Mathematical models ; Mathematics ; Permutation ; Permutations ; Probability ; Proving ; Quantitative Methods ; Variance</subject><ispartof>Discrete Applied Mathematics, 2013-07, Vol.161 (10-11), p.1448-1466</ispartof><rights>2013 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</citedby><cites>FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</cites><orcidid>0000-0002-9945-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2013.02.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00809299$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grusea, Simona</creatorcontrib><creatorcontrib>Labarre, Anthony</creatorcontrib><title>The distribution of cycles in breakpoint graphs of signed permutations</title><title>Discrete Applied Mathematics</title><description>Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results.</description><subject>Bioinformatics</subject><subject>Combinatorics</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Discrete Mathematics</subject><subject>Genome rearrangement</subject><subject>Genomes</subject><subject>Graphs</subject><subject>Hultman number</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Permutation</subject><subject>Permutations</subject><subject>Probability</subject><subject>Proving</subject><subject>Quantitative Methods</subject><subject>Variance</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbj1CIcWO_2TVJzQBAxpEpchcYvSxGUZXVuSbhLfnlZDHDlZtn_vWX6MXSMkCFjcbROrdwkHTBPgCQA_YTOUgseFEHjKZiNTxBzl-zm7CGELADh2M_a03lBkXRi8q_aD69qoqyPzbRoKkWujypP-7DvXDtGH1_0mTOvgPlqyUU9-tx_0JAqX7KzWTaCr3zpnb0-P68UyXr0-vyweVrHJQAwxl2maZlle8ZIjGFmktuC2IhSQSVnkJAqRAVY1oeU2K2uQWpclZrWlPJcynbPbo-9GN6r3bqf9t-q0U8uHlZpmABJKXpYHHNmbI9v77mtPYVA7Fww1jW6p2weFeSFA5AL4iOIRNb4LwVP9542gpnzVVo35qilfBXy8Mmnujxoa_z048ioYR60h6zyZQdnO_aP-AdjFgQo</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Grusea, Simona</creator><creator>Labarre, Anthony</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9945-6774</orcidid></search><sort><creationdate>20130701</creationdate><title>The distribution of cycles in breakpoint graphs of signed permutations</title><author>Grusea, Simona ; Labarre, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-28333445b29210c863d62dbe17048865e767401bfe1d2d49f08aa9914fde55883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioinformatics</topic><topic>Combinatorics</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Discrete Mathematics</topic><topic>Genome rearrangement</topic><topic>Genomes</topic><topic>Graphs</topic><topic>Hultman number</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Permutation</topic><topic>Permutations</topic><topic>Probability</topic><topic>Proving</topic><topic>Quantitative Methods</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grusea, Simona</creatorcontrib><creatorcontrib>Labarre, Anthony</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grusea, Simona</au><au>Labarre, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The distribution of cycles in breakpoint graphs of signed permutations</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>161</volume><issue>10-11</issue><spage>1448</spage><epage>1466</epage><pages>1448-1466</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre [6], who enumerated unsigned permutations whose breakpoint graph contains k cycles, to signed permutations, and prove explicit formulae for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also show how our results can be used to derive simpler proofs of other previously known results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.02.002</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9945-6774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2013-07, Vol.161 (10-11), p.1448-1466
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_00809299v1
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Bioinformatics
Combinatorics
Computation
Computer Science
Decomposition
Discrete Mathematics
Genome rearrangement
Genomes
Graphs
Hultman number
Life Sciences
Mathematical models
Mathematics
Permutation
Permutations
Probability
Proving
Quantitative Methods
Variance
title The distribution of cycles in breakpoint graphs of signed permutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20distribution%20of%20cycles%20in%20breakpoint%20graphs%20of%20signed%20permutations&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Grusea,%20Simona&rft.date=2013-07-01&rft.volume=161&rft.issue=10-11&rft.spage=1448&rft.epage=1466&rft.pages=1448-1466&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.02.002&rft_dat=%3Cproquest_hal_p%3E1567075702%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567075702&rft_id=info:pmid/&rft_els_id=S0166218X13000541&rfr_iscdi=true