Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation

Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2012-10, Vol.53 (22), p.5045-5051
Hauptverfasser: Bally, Florence, Garg, Dhiraj Kumar, Serra, Christophe A., Hoarau, Yannick, Anton, Nicolas, Brochon, Cyril, Parida, Dambarudhar, Vandamme, Thierry, Hadziioannou, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5051
container_issue 22
container_start_page 5045
container_title Polymer (Guilford)
container_volume 53
creator Bally, Florence
Garg, Dhiraj Kumar
Serra, Christophe A.
Hoarau, Yannick
Anton, Nicolas
Brochon, Cyril
Parida, Dambarudhar
Vandamme, Thierry
Hadziioannou, Georges
description Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles. [Display omitted]
doi_str_mv 10.1016/j.polymer.2012.08.039
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00803377v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386112007124</els_id><sourcerecordid>1677912507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</originalsourceid><addsrcrecordid>eNqFkUGP1DAMhSsEEsPCT0D0ggSHFjtpm_SEVquFXWkkDrBXIk_qQkZtU5LOSMOvJ0OHvXKKFH9-fn7OstcIJQI2H_bl7IfTyKEUgKIEXYJsn2Qb1EoWQrT4NNsASFFI3eDz7EWMewAQtag22ff7cQ7-yF0e3W8ulsNEu4HzOfBMgRbnp9z3-UXf2XyiyafK4uzAMd-d8tHZ4Pvh4Lp_1cDWzW752_wye9bTEPnV5b3KHj7dfru5K7ZfPt_fXG8LW1dyKSRD24FO7pWqd4RcSa5Q9AItyZbZatIV7JgUtQ2iZaUtVhawJVnpvpNX2ftV9ycNZg5upHAynpy5u96a8x8kdSmVOmJi361sWvzXgeNiRhctDwNN7A_RYKNUi6IGldB6RdOOMQbuH7URzDl7szeXbMw5ewPapOxT39vLCIqWhj7QZF18bBZN1Va1OFt5s3I9eUM_QmIeviahGgDTibRIxMeV4JTe0aU50TqeLHcu5byYzrv_ePkD6iWncA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677912507</pqid></control><display><type>article</type><title>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bally, Florence ; Garg, Dhiraj Kumar ; Serra, Christophe A. ; Hoarau, Yannick ; Anton, Nicolas ; Brochon, Cyril ; Parida, Dambarudhar ; Vandamme, Thierry ; Hadziioannou, Georges</creator><creatorcontrib>Bally, Florence ; Garg, Dhiraj Kumar ; Serra, Christophe A. ; Hoarau, Yannick ; Anton, Nicolas ; Brochon, Cyril ; Parida, Dambarudhar ; Vandamme, Thierry ; Hadziioannou, Georges</creatorcontrib><description>Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles. [Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2012.08.039</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CFD numerical simulation ; Chemical Sciences ; Computational fluid dynamics ; Criteria ; Devices ; Exact sciences and technology ; Flow rate ; Forms of application and semi-finished materials ; hydrodynamics ; mass transfer ; Mathematical models ; Microfluidics ; Microprocess ; Miscellaneous ; mixing ; molecular weight ; Nanoparticles ; Nanoprecipitation ; Nanostructure ; particle size ; Polymer industry, paints, wood ; Polymeric nanoparticle ; Polymers ; Technology of polymers</subject><ispartof>Polymer (Guilford), 2012-10, Vol.53 (22), p.5045-5051</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</citedby><cites>FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</cites><orcidid>0000-0003-3242-1574 ; 0000-0001-9253-7902 ; 0000-0002-7047-9657 ; 0000-0003-4140-053X ; 0000-0002-7377-6040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2012.08.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26494521$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00803377$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bally, Florence</creatorcontrib><creatorcontrib>Garg, Dhiraj Kumar</creatorcontrib><creatorcontrib>Serra, Christophe A.</creatorcontrib><creatorcontrib>Hoarau, Yannick</creatorcontrib><creatorcontrib>Anton, Nicolas</creatorcontrib><creatorcontrib>Brochon, Cyril</creatorcontrib><creatorcontrib>Parida, Dambarudhar</creatorcontrib><creatorcontrib>Vandamme, Thierry</creatorcontrib><creatorcontrib>Hadziioannou, Georges</creatorcontrib><title>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</title><title>Polymer (Guilford)</title><description>Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles. [Display omitted]</description><subject>Applied sciences</subject><subject>CFD numerical simulation</subject><subject>Chemical Sciences</subject><subject>Computational fluid dynamics</subject><subject>Criteria</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Flow rate</subject><subject>Forms of application and semi-finished materials</subject><subject>hydrodynamics</subject><subject>mass transfer</subject><subject>Mathematical models</subject><subject>Microfluidics</subject><subject>Microprocess</subject><subject>Miscellaneous</subject><subject>mixing</subject><subject>molecular weight</subject><subject>Nanoparticles</subject><subject>Nanoprecipitation</subject><subject>Nanostructure</subject><subject>particle size</subject><subject>Polymer industry, paints, wood</subject><subject>Polymeric nanoparticle</subject><subject>Polymers</subject><subject>Technology of polymers</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUGP1DAMhSsEEsPCT0D0ggSHFjtpm_SEVquFXWkkDrBXIk_qQkZtU5LOSMOvJ0OHvXKKFH9-fn7OstcIJQI2H_bl7IfTyKEUgKIEXYJsn2Qb1EoWQrT4NNsASFFI3eDz7EWMewAQtag22ff7cQ7-yF0e3W8ulsNEu4HzOfBMgRbnp9z3-UXf2XyiyafK4uzAMd-d8tHZ4Pvh4Lp_1cDWzW752_wye9bTEPnV5b3KHj7dfru5K7ZfPt_fXG8LW1dyKSRD24FO7pWqd4RcSa5Q9AItyZbZatIV7JgUtQ2iZaUtVhawJVnpvpNX2ftV9ycNZg5upHAynpy5u96a8x8kdSmVOmJi361sWvzXgeNiRhctDwNN7A_RYKNUi6IGldB6RdOOMQbuH7URzDl7szeXbMw5ewPapOxT39vLCIqWhj7QZF18bBZN1Va1OFt5s3I9eUM_QmIeviahGgDTibRIxMeV4JTe0aU50TqeLHcu5byYzrv_ePkD6iWncA</recordid><startdate>20121012</startdate><enddate>20121012</enddate><creator>Bally, Florence</creator><creator>Garg, Dhiraj Kumar</creator><creator>Serra, Christophe A.</creator><creator>Hoarau, Yannick</creator><creator>Anton, Nicolas</creator><creator>Brochon, Cyril</creator><creator>Parida, Dambarudhar</creator><creator>Vandamme, Thierry</creator><creator>Hadziioannou, Georges</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3242-1574</orcidid><orcidid>https://orcid.org/0000-0001-9253-7902</orcidid><orcidid>https://orcid.org/0000-0002-7047-9657</orcidid><orcidid>https://orcid.org/0000-0003-4140-053X</orcidid><orcidid>https://orcid.org/0000-0002-7377-6040</orcidid></search><sort><creationdate>20121012</creationdate><title>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</title><author>Bally, Florence ; Garg, Dhiraj Kumar ; Serra, Christophe A. ; Hoarau, Yannick ; Anton, Nicolas ; Brochon, Cyril ; Parida, Dambarudhar ; Vandamme, Thierry ; Hadziioannou, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>CFD numerical simulation</topic><topic>Chemical Sciences</topic><topic>Computational fluid dynamics</topic><topic>Criteria</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Flow rate</topic><topic>Forms of application and semi-finished materials</topic><topic>hydrodynamics</topic><topic>mass transfer</topic><topic>Mathematical models</topic><topic>Microfluidics</topic><topic>Microprocess</topic><topic>Miscellaneous</topic><topic>mixing</topic><topic>molecular weight</topic><topic>Nanoparticles</topic><topic>Nanoprecipitation</topic><topic>Nanostructure</topic><topic>particle size</topic><topic>Polymer industry, paints, wood</topic><topic>Polymeric nanoparticle</topic><topic>Polymers</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bally, Florence</creatorcontrib><creatorcontrib>Garg, Dhiraj Kumar</creatorcontrib><creatorcontrib>Serra, Christophe A.</creatorcontrib><creatorcontrib>Hoarau, Yannick</creatorcontrib><creatorcontrib>Anton, Nicolas</creatorcontrib><creatorcontrib>Brochon, Cyril</creatorcontrib><creatorcontrib>Parida, Dambarudhar</creatorcontrib><creatorcontrib>Vandamme, Thierry</creatorcontrib><creatorcontrib>Hadziioannou, Georges</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bally, Florence</au><au>Garg, Dhiraj Kumar</au><au>Serra, Christophe A.</au><au>Hoarau, Yannick</au><au>Anton, Nicolas</au><au>Brochon, Cyril</au><au>Parida, Dambarudhar</au><au>Vandamme, Thierry</au><au>Hadziioannou, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</atitle><jtitle>Polymer (Guilford)</jtitle><date>2012-10-12</date><risdate>2012</risdate><volume>53</volume><issue>22</issue><spage>5045</spage><epage>5051</epage><pages>5045-5051</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2012.08.039</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3242-1574</orcidid><orcidid>https://orcid.org/0000-0001-9253-7902</orcidid><orcidid>https://orcid.org/0000-0002-7047-9657</orcidid><orcidid>https://orcid.org/0000-0003-4140-053X</orcidid><orcidid>https://orcid.org/0000-0002-7377-6040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2012-10, Vol.53 (22), p.5045-5051
issn 0032-3861
1873-2291
language eng
recordid cdi_hal_primary_oai_HAL_hal_00803377v1
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
CFD numerical simulation
Chemical Sciences
Computational fluid dynamics
Criteria
Devices
Exact sciences and technology
Flow rate
Forms of application and semi-finished materials
hydrodynamics
mass transfer
Mathematical models
Microfluidics
Microprocess
Miscellaneous
mixing
molecular weight
Nanoparticles
Nanoprecipitation
Nanostructure
particle size
Polymer industry, paints, wood
Polymeric nanoparticle
Polymers
Technology of polymers
title Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20size-tunable%20preparation%20of%20polymeric%20nanoparticles%20by%20microfluidic%20nanoprecipitation&rft.jtitle=Polymer%20(Guilford)&rft.au=Bally,%20Florence&rft.date=2012-10-12&rft.volume=53&rft.issue=22&rft.spage=5045&rft.epage=5051&rft.pages=5045-5051&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2012.08.039&rft_dat=%3Cproquest_hal_p%3E1677912507%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677912507&rft_id=info:pmid/&rft_els_id=S0032386112007124&rfr_iscdi=true