Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation
Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, th...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2012-10, Vol.53 (22), p.5045-5051 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5051 |
---|---|
container_issue | 22 |
container_start_page | 5045 |
container_title | Polymer (Guilford) |
container_volume | 53 |
creator | Bally, Florence Garg, Dhiraj Kumar Serra, Christophe A. Hoarau, Yannick Anton, Nicolas Brochon, Cyril Parida, Dambarudhar Vandamme, Thierry Hadziioannou, Georges |
description | Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles.
[Display omitted] |
doi_str_mv | 10.1016/j.polymer.2012.08.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00803377v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386112007124</els_id><sourcerecordid>1677912507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</originalsourceid><addsrcrecordid>eNqFkUGP1DAMhSsEEsPCT0D0ggSHFjtpm_SEVquFXWkkDrBXIk_qQkZtU5LOSMOvJ0OHvXKKFH9-fn7OstcIJQI2H_bl7IfTyKEUgKIEXYJsn2Qb1EoWQrT4NNsASFFI3eDz7EWMewAQtag22ff7cQ7-yF0e3W8ulsNEu4HzOfBMgRbnp9z3-UXf2XyiyafK4uzAMd-d8tHZ4Pvh4Lp_1cDWzW752_wye9bTEPnV5b3KHj7dfru5K7ZfPt_fXG8LW1dyKSRD24FO7pWqd4RcSa5Q9AItyZbZatIV7JgUtQ2iZaUtVhawJVnpvpNX2ftV9ycNZg5upHAynpy5u96a8x8kdSmVOmJi361sWvzXgeNiRhctDwNN7A_RYKNUi6IGldB6RdOOMQbuH7URzDl7szeXbMw5ewPapOxT39vLCIqWhj7QZF18bBZN1Va1OFt5s3I9eUM_QmIeviahGgDTibRIxMeV4JTe0aU50TqeLHcu5byYzrv_ePkD6iWncA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677912507</pqid></control><display><type>article</type><title>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bally, Florence ; Garg, Dhiraj Kumar ; Serra, Christophe A. ; Hoarau, Yannick ; Anton, Nicolas ; Brochon, Cyril ; Parida, Dambarudhar ; Vandamme, Thierry ; Hadziioannou, Georges</creator><creatorcontrib>Bally, Florence ; Garg, Dhiraj Kumar ; Serra, Christophe A. ; Hoarau, Yannick ; Anton, Nicolas ; Brochon, Cyril ; Parida, Dambarudhar ; Vandamme, Thierry ; Hadziioannou, Georges</creatorcontrib><description>Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles.
[Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2012.08.039</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CFD numerical simulation ; Chemical Sciences ; Computational fluid dynamics ; Criteria ; Devices ; Exact sciences and technology ; Flow rate ; Forms of application and semi-finished materials ; hydrodynamics ; mass transfer ; Mathematical models ; Microfluidics ; Microprocess ; Miscellaneous ; mixing ; molecular weight ; Nanoparticles ; Nanoprecipitation ; Nanostructure ; particle size ; Polymer industry, paints, wood ; Polymeric nanoparticle ; Polymers ; Technology of polymers</subject><ispartof>Polymer (Guilford), 2012-10, Vol.53 (22), p.5045-5051</ispartof><rights>2012</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</citedby><cites>FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</cites><orcidid>0000-0003-3242-1574 ; 0000-0001-9253-7902 ; 0000-0002-7047-9657 ; 0000-0003-4140-053X ; 0000-0002-7377-6040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2012.08.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26494521$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00803377$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bally, Florence</creatorcontrib><creatorcontrib>Garg, Dhiraj Kumar</creatorcontrib><creatorcontrib>Serra, Christophe A.</creatorcontrib><creatorcontrib>Hoarau, Yannick</creatorcontrib><creatorcontrib>Anton, Nicolas</creatorcontrib><creatorcontrib>Brochon, Cyril</creatorcontrib><creatorcontrib>Parida, Dambarudhar</creatorcontrib><creatorcontrib>Vandamme, Thierry</creatorcontrib><creatorcontrib>Hadziioannou, Georges</creatorcontrib><title>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</title><title>Polymer (Guilford)</title><description>Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles.
[Display omitted]</description><subject>Applied sciences</subject><subject>CFD numerical simulation</subject><subject>Chemical Sciences</subject><subject>Computational fluid dynamics</subject><subject>Criteria</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Flow rate</subject><subject>Forms of application and semi-finished materials</subject><subject>hydrodynamics</subject><subject>mass transfer</subject><subject>Mathematical models</subject><subject>Microfluidics</subject><subject>Microprocess</subject><subject>Miscellaneous</subject><subject>mixing</subject><subject>molecular weight</subject><subject>Nanoparticles</subject><subject>Nanoprecipitation</subject><subject>Nanostructure</subject><subject>particle size</subject><subject>Polymer industry, paints, wood</subject><subject>Polymeric nanoparticle</subject><subject>Polymers</subject><subject>Technology of polymers</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUGP1DAMhSsEEsPCT0D0ggSHFjtpm_SEVquFXWkkDrBXIk_qQkZtU5LOSMOvJ0OHvXKKFH9-fn7OstcIJQI2H_bl7IfTyKEUgKIEXYJsn2Qb1EoWQrT4NNsASFFI3eDz7EWMewAQtag22ff7cQ7-yF0e3W8ulsNEu4HzOfBMgRbnp9z3-UXf2XyiyafK4uzAMd-d8tHZ4Pvh4Lp_1cDWzW752_wye9bTEPnV5b3KHj7dfru5K7ZfPt_fXG8LW1dyKSRD24FO7pWqd4RcSa5Q9AItyZbZatIV7JgUtQ2iZaUtVhawJVnpvpNX2ftV9ycNZg5upHAynpy5u96a8x8kdSmVOmJi361sWvzXgeNiRhctDwNN7A_RYKNUi6IGldB6RdOOMQbuH7URzDl7szeXbMw5ewPapOxT39vLCIqWhj7QZF18bBZN1Va1OFt5s3I9eUM_QmIeviahGgDTibRIxMeV4JTe0aU50TqeLHcu5byYzrv_ePkD6iWncA</recordid><startdate>20121012</startdate><enddate>20121012</enddate><creator>Bally, Florence</creator><creator>Garg, Dhiraj Kumar</creator><creator>Serra, Christophe A.</creator><creator>Hoarau, Yannick</creator><creator>Anton, Nicolas</creator><creator>Brochon, Cyril</creator><creator>Parida, Dambarudhar</creator><creator>Vandamme, Thierry</creator><creator>Hadziioannou, Georges</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3242-1574</orcidid><orcidid>https://orcid.org/0000-0001-9253-7902</orcidid><orcidid>https://orcid.org/0000-0002-7047-9657</orcidid><orcidid>https://orcid.org/0000-0003-4140-053X</orcidid><orcidid>https://orcid.org/0000-0002-7377-6040</orcidid></search><sort><creationdate>20121012</creationdate><title>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</title><author>Bally, Florence ; Garg, Dhiraj Kumar ; Serra, Christophe A. ; Hoarau, Yannick ; Anton, Nicolas ; Brochon, Cyril ; Parida, Dambarudhar ; Vandamme, Thierry ; Hadziioannou, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-3e09d08012775ba1e43e412f21ca39eec8a840bea7a9611ce78c14c019a348fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>CFD numerical simulation</topic><topic>Chemical Sciences</topic><topic>Computational fluid dynamics</topic><topic>Criteria</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Flow rate</topic><topic>Forms of application and semi-finished materials</topic><topic>hydrodynamics</topic><topic>mass transfer</topic><topic>Mathematical models</topic><topic>Microfluidics</topic><topic>Microprocess</topic><topic>Miscellaneous</topic><topic>mixing</topic><topic>molecular weight</topic><topic>Nanoparticles</topic><topic>Nanoprecipitation</topic><topic>Nanostructure</topic><topic>particle size</topic><topic>Polymer industry, paints, wood</topic><topic>Polymeric nanoparticle</topic><topic>Polymers</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bally, Florence</creatorcontrib><creatorcontrib>Garg, Dhiraj Kumar</creatorcontrib><creatorcontrib>Serra, Christophe A.</creatorcontrib><creatorcontrib>Hoarau, Yannick</creatorcontrib><creatorcontrib>Anton, Nicolas</creatorcontrib><creatorcontrib>Brochon, Cyril</creatorcontrib><creatorcontrib>Parida, Dambarudhar</creatorcontrib><creatorcontrib>Vandamme, Thierry</creatorcontrib><creatorcontrib>Hadziioannou, Georges</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bally, Florence</au><au>Garg, Dhiraj Kumar</au><au>Serra, Christophe A.</au><au>Hoarau, Yannick</au><au>Anton, Nicolas</au><au>Brochon, Cyril</au><au>Parida, Dambarudhar</au><au>Vandamme, Thierry</au><au>Hadziioannou, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation</atitle><jtitle>Polymer (Guilford)</jtitle><date>2012-10-12</date><risdate>2012</risdate><volume>53</volume><issue>22</issue><spage>5045</spage><epage>5051</epage><pages>5045-5051</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>Size-tunable polymeric nanoparticles have been successfully produced by a microfluidic-assisted nanoprecipitation process. A multilamination micromixer has been chosen to fabricate continuously nanoparticles of methacrylic polymers. Various operating conditions, such as the polymer concentration, the amount of non-solvent and the characteristics of the raw polymer (molecular weight and architecture: linear vs. branched) have been investigated. Their influences on the final particle size, ranging from 76 to 217 nm, have been correlated to the mechanisms leading to the formation of nanoparticles. In this type of microfluidic device, mixing mainly operates by diffusion mass transfer, helped by hydrodynamic focusing. The effect of micromixing on the size of particles has also been shown experimentally and supported by a computational fluid dynamics (CFD) study. A mixing criterion has been defined and numerically calculated to corroborate the effect of the flow rate of polymer solution on the particles size. An increase in the polymer solution flow rate increases the value of this mixing criterion, resulting in smaller nanoparticles.
[Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2012.08.039</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3242-1574</orcidid><orcidid>https://orcid.org/0000-0001-9253-7902</orcidid><orcidid>https://orcid.org/0000-0002-7047-9657</orcidid><orcidid>https://orcid.org/0000-0003-4140-053X</orcidid><orcidid>https://orcid.org/0000-0002-7377-6040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2012-10, Vol.53 (22), p.5045-5051 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00803377v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences CFD numerical simulation Chemical Sciences Computational fluid dynamics Criteria Devices Exact sciences and technology Flow rate Forms of application and semi-finished materials hydrodynamics mass transfer Mathematical models Microfluidics Microprocess Miscellaneous mixing molecular weight Nanoparticles Nanoprecipitation Nanostructure particle size Polymer industry, paints, wood Polymeric nanoparticle Polymers Technology of polymers |
title | Improved size-tunable preparation of polymeric nanoparticles by microfluidic nanoprecipitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20size-tunable%20preparation%20of%20polymeric%20nanoparticles%20by%20microfluidic%20nanoprecipitation&rft.jtitle=Polymer%20(Guilford)&rft.au=Bally,%20Florence&rft.date=2012-10-12&rft.volume=53&rft.issue=22&rft.spage=5045&rft.epage=5051&rft.pages=5045-5051&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2012.08.039&rft_dat=%3Cproquest_hal_p%3E1677912507%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677912507&rft_id=info:pmid/&rft_els_id=S0032386112007124&rfr_iscdi=true |