Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock

Analytical and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration corresponds to an experiment achieved at DLR by Bake et al. [The entropy wave generator (EWG): a reference case on entropy noise, Journal of Sound and Vibration 326 (2009) 574–598]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2011-08, Vol.330 (16), p.3944-3958
Hauptverfasser: Leyko, M., Moreau, S., Nicoud, F., Poinsot, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3958
container_issue 16
container_start_page 3944
container_title Journal of sound and vibration
container_volume 330
creator Leyko, M.
Moreau, S.
Nicoud, F.
Poinsot, T.
description Analytical and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration corresponds to an experiment achieved at DLR by Bake et al. [The entropy wave generator (EWG): a reference case on entropy noise, Journal of Sound and Vibration 326 (2009) 574–598] where an entropy wave is generated upstream of a nozzle by an electrical heating device. Both 3-D and 2-D axisymmetric simulations are performed to demonstrate that the experiment is mostly driven by linear acoustic phenomena, including pressure wave reflection at the outlet and entropy-to-acoustic conversion in the accelerated regions. Moreover, the spatial inhomogeneity of the upstream entropy fluctuation has no visible effect for the investigated frequency range (0–100 Hz). Similar results are obtained with a purely analytical method based on the compact nozzle approximation of Marble and Candel [Acoustic disturbances from gas nonuniformities convected through a nozzle, Journal of Sound and Vibration 55 (1977) 225–243] demonstrating that the DLR results can be reproduced simply on the basis of a low-frequency compact-elements approximation. Like in the present simulations, the analytical method shows that the acoustic impedance downstream of the nozzle must be accounted for to properly recover the experimental pressure signal. The analytical method can also be used to optimize the experimental parameters and avoid the interaction between transmitted and reflected waves.
doi_str_mv 10.1016/j.jsv.2011.01.025
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00802478v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X11000733</els_id><sourcerecordid>889396195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-6ef875f5a70cd3264da0096c1370be2a2d90eb6ec00eca18d6360f1407f153ff3</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhq2qSN1CH6C3XCroIcuM4ziJOCFUSqVVuVC1N8s44663WXuxs4uWp8fpIo5IY1kef_P79wxjnxHmCCjPV_NV2s05IM4hB6_fsRlCV5dtLdv3bAbAeSkk_PnAPqa0AoBOVGLGfv_crik6o4dC-z4vPezH_8d16GkYnP9bBFuQH2PY7AsfXKLC-UIXabuhmIJ3JmefngYqHt24nC6Wwfw7YUdWD4k-vezH7Nf1t7urm3Jx-_3H1eWiNEJ2YynJtk1ta92A6SsuRa-zM2mwauCeuOZ9B3QvyQCQ0dj2spJgUUBjsa6srY7Z14PuUg9qE91ax70K2qmby4WacgAtcNG0O8zs6YHdxPCwpTSqtUsmf1J7Ctuk2rarOoldncmzN0lsJEcuMp5RPKAmhpQi2VcXCGoajVqpPBo1jUZBDj7Jf3mR1ym32kbtjUuvhVzwCrmcDF8cOMod3DmKKhlH3lDvIplR9cG98cozfS2i6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762124939</pqid></control><display><type>article</type><title>Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Leyko, M. ; Moreau, S. ; Nicoud, F. ; Poinsot, T.</creator><creatorcontrib>Leyko, M. ; Moreau, S. ; Nicoud, F. ; Poinsot, T.</creatorcontrib><description>Analytical and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration corresponds to an experiment achieved at DLR by Bake et al. [The entropy wave generator (EWG): a reference case on entropy noise, Journal of Sound and Vibration 326 (2009) 574–598] where an entropy wave is generated upstream of a nozzle by an electrical heating device. Both 3-D and 2-D axisymmetric simulations are performed to demonstrate that the experiment is mostly driven by linear acoustic phenomena, including pressure wave reflection at the outlet and entropy-to-acoustic conversion in the accelerated regions. Moreover, the spatial inhomogeneity of the upstream entropy fluctuation has no visible effect for the investigated frequency range (0–100 Hz). Similar results are obtained with a purely analytical method based on the compact nozzle approximation of Marble and Candel [Acoustic disturbances from gas nonuniformities convected through a nozzle, Journal of Sound and Vibration 55 (1977) 225–243] demonstrating that the DLR results can be reproduced simply on the basis of a low-frequency compact-elements approximation. Like in the present simulations, the analytical method shows that the acoustic impedance downstream of the nozzle must be accounted for to properly recover the experimental pressure signal. The analytical method can also be used to optimize the experimental parameters and avoid the interaction between transmitted and reflected waves.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2011.01.025</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Engines and turbines ; Entropy ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Linear acoustics ; Mathematical analysis ; Mathematical models ; Mechanics ; Noise ; Nozzles ; Physics ; Sound ; Vibration</subject><ispartof>Journal of sound and vibration, 2011-08, Vol.330 (16), p.3944-3958</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-6ef875f5a70cd3264da0096c1370be2a2d90eb6ec00eca18d6360f1407f153ff3</citedby><cites>FETCH-LOGICAL-c469t-6ef875f5a70cd3264da0096c1370be2a2d90eb6ec00eca18d6360f1407f153ff3</cites><orcidid>0000-0002-0006-8422 ; 0000-0001-8383-3961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2011.01.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24231261$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00802478$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Leyko, M.</creatorcontrib><creatorcontrib>Moreau, S.</creatorcontrib><creatorcontrib>Nicoud, F.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><title>Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock</title><title>Journal of sound and vibration</title><description>Analytical and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration corresponds to an experiment achieved at DLR by Bake et al. [The entropy wave generator (EWG): a reference case on entropy noise, Journal of Sound and Vibration 326 (2009) 574–598] where an entropy wave is generated upstream of a nozzle by an electrical heating device. Both 3-D and 2-D axisymmetric simulations are performed to demonstrate that the experiment is mostly driven by linear acoustic phenomena, including pressure wave reflection at the outlet and entropy-to-acoustic conversion in the accelerated regions. Moreover, the spatial inhomogeneity of the upstream entropy fluctuation has no visible effect for the investigated frequency range (0–100 Hz). Similar results are obtained with a purely analytical method based on the compact nozzle approximation of Marble and Candel [Acoustic disturbances from gas nonuniformities convected through a nozzle, Journal of Sound and Vibration 55 (1977) 225–243] demonstrating that the DLR results can be reproduced simply on the basis of a low-frequency compact-elements approximation. Like in the present simulations, the analytical method shows that the acoustic impedance downstream of the nozzle must be accounted for to properly recover the experimental pressure signal. The analytical method can also be used to optimize the experimental parameters and avoid the interaction between transmitted and reflected waves.</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Engines and turbines</subject><subject>Entropy</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear acoustics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Noise</subject><subject>Nozzles</subject><subject>Physics</subject><subject>Sound</subject><subject>Vibration</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kcFO3DAQhq2qSN1CH6C3XCroIcuM4ziJOCFUSqVVuVC1N8s44663WXuxs4uWp8fpIo5IY1kef_P79wxjnxHmCCjPV_NV2s05IM4hB6_fsRlCV5dtLdv3bAbAeSkk_PnAPqa0AoBOVGLGfv_crik6o4dC-z4vPezH_8d16GkYnP9bBFuQH2PY7AsfXKLC-UIXabuhmIJ3JmefngYqHt24nC6Wwfw7YUdWD4k-vezH7Nf1t7urm3Jx-_3H1eWiNEJ2YynJtk1ta92A6SsuRa-zM2mwauCeuOZ9B3QvyQCQ0dj2spJgUUBjsa6srY7Z14PuUg9qE91ax70K2qmby4WacgAtcNG0O8zs6YHdxPCwpTSqtUsmf1J7Ctuk2rarOoldncmzN0lsJEcuMp5RPKAmhpQi2VcXCGoajVqpPBo1jUZBDj7Jf3mR1ym32kbtjUuvhVzwCrmcDF8cOMod3DmKKhlH3lDvIplR9cG98cozfS2i6g</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Leyko, M.</creator><creator>Moreau, S.</creator><creator>Nicoud, F.</creator><creator>Poinsot, T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0006-8422</orcidid><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid></search><sort><creationdate>20110801</creationdate><title>Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock</title><author>Leyko, M. ; Moreau, S. ; Nicoud, F. ; Poinsot, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-6ef875f5a70cd3264da0096c1370be2a2d90eb6ec00eca18d6360f1407f153ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Engines and turbines</topic><topic>Entropy</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear acoustics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Noise</topic><topic>Nozzles</topic><topic>Physics</topic><topic>Sound</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leyko, M.</creatorcontrib><creatorcontrib>Moreau, S.</creatorcontrib><creatorcontrib>Nicoud, F.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leyko, M.</au><au>Moreau, S.</au><au>Nicoud, F.</au><au>Poinsot, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock</atitle><jtitle>Journal of sound and vibration</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>330</volume><issue>16</issue><spage>3944</spage><epage>3958</epage><pages>3944-3958</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>Analytical and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration corresponds to an experiment achieved at DLR by Bake et al. [The entropy wave generator (EWG): a reference case on entropy noise, Journal of Sound and Vibration 326 (2009) 574–598] where an entropy wave is generated upstream of a nozzle by an electrical heating device. Both 3-D and 2-D axisymmetric simulations are performed to demonstrate that the experiment is mostly driven by linear acoustic phenomena, including pressure wave reflection at the outlet and entropy-to-acoustic conversion in the accelerated regions. Moreover, the spatial inhomogeneity of the upstream entropy fluctuation has no visible effect for the investigated frequency range (0–100 Hz). Similar results are obtained with a purely analytical method based on the compact nozzle approximation of Marble and Candel [Acoustic disturbances from gas nonuniformities convected through a nozzle, Journal of Sound and Vibration 55 (1977) 225–243] demonstrating that the DLR results can be reproduced simply on the basis of a low-frequency compact-elements approximation. Like in the present simulations, the analytical method shows that the acoustic impedance downstream of the nozzle must be accounted for to properly recover the experimental pressure signal. The analytical method can also be used to optimize the experimental parameters and avoid the interaction between transmitted and reflected waves.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2011.01.025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0006-8422</orcidid><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2011-08, Vol.330 (16), p.3944-3958
issn 0022-460X
1095-8568
language eng
recordid cdi_hal_primary_oai_HAL_hal_00802478v1
source Elsevier ScienceDirect Journals Complete
subjects Acoustics
Aeroacoustics, atmospheric sound
Applied sciences
Energy
Energy. Thermal use of fuels
Engineering Sciences
Engines and turbines
Entropy
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fluid mechanics
Fluids mechanics
Fundamental areas of phenomenology (including applications)
Linear acoustics
Mathematical analysis
Mathematical models
Mechanics
Noise
Nozzles
Physics
Sound
Vibration
title Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20analytical%20modelling%20of%20entropy%20noise%20in%20a%20supersonic%20nozzle%20with%20a%20shock&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Leyko,%20M.&rft.date=2011-08-01&rft.volume=330&rft.issue=16&rft.spage=3944&rft.epage=3958&rft.pages=3944-3958&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2011.01.025&rft_dat=%3Cproquest_hal_p%3E889396195%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762124939&rft_id=info:pmid/&rft_els_id=S0022460X11000733&rfr_iscdi=true