A review on the prediction of building energy consumption

The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable & sustainable energy reviews 2012-08, Vol.16 (6), p.3586-3592
Hauptverfasser: Zhao, Hai-xiang, Magoulès, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3592
container_issue 6
container_start_page 3586
container_title Renewable & sustainable energy reviews
container_volume 16
creator Zhao, Hai-xiang
Magoulès, Frédéric
description The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.
doi_str_mv 10.1016/j.rser.2012.02.049
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00802029v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364032112001438</els_id><sourcerecordid>1038613631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</originalsourceid><addsrcrecordid>eNp9kE1LJDEQhhtZQXf0D3ixLwvroWcrH91JYC-DuKswsAf1HDLpypihpzObdCv-e9P04FEoSCp56qV4iuKKwJIAaX7tljFhXFIgdAm5uDopzokUqoJGwbd8Zw2vgFFyVnxPaQdAainYeaFWZcRXj29l6MvhBctDxNbbwec2uHIz-q71_bbEHuP2vbShT-P-MH1fFKfOdAkvj-eieP5z93R7X63__X24Xa0ry6UYKiao5E5YKeu2AcpraSgaJwnbMMG4A8WUYJuNVcYBFxSxFYYQY2qQmMfYoriZc19Mpw_R701818F4fb9a6-kNQAIFql5JZn_O7CGG_yOmQe99sth1pscwJk2AySarYBNKZ9TGkFJE95lNQE9O9U5PTvXkVEMurvLQj2O-SdZ0Lpre-vQ5SRtQUvJp5-uZcyZos42ZeX7MQXX2PkEiE79nArO67D_qZD32NsuPaAfdBv_VIh9rCZPh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038613631</pqid></control><display><type>article</type><title>A review on the prediction of building energy consumption</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Hai-xiang ; Magoulès, Frédéric</creator><creatorcontrib>Zhao, Hai-xiang ; Magoulès, Frédéric</creatorcontrib><description>The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.</description><identifier>ISSN: 1364-0321</identifier><identifier>EISSN: 1879-0690</identifier><identifier>DOI: 10.1016/j.rser.2012.02.049</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Building ; buildings ; Energy ; Energy consumption ; Engineering methods ; Exact sciences and technology ; Mathematics ; Prediction ; problem solving ; statistical analysis ; Statistical models ; Statistics ; weather</subject><ispartof>Renewable &amp; sustainable energy reviews, 2012-08, Vol.16 (6), p.3586-3592</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</citedby><cites>FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</cites><orcidid>0000-0002-1198-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364032112001438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26098848$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00802029$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hai-xiang</creatorcontrib><creatorcontrib>Magoulès, Frédéric</creatorcontrib><title>A review on the prediction of building energy consumption</title><title>Renewable &amp; sustainable energy reviews</title><description>The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Building</subject><subject>buildings</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Engineering methods</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Prediction</subject><subject>problem solving</subject><subject>statistical analysis</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>weather</subject><issn>1364-0321</issn><issn>1879-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LJDEQhhtZQXf0D3ixLwvroWcrH91JYC-DuKswsAf1HDLpypihpzObdCv-e9P04FEoSCp56qV4iuKKwJIAaX7tljFhXFIgdAm5uDopzokUqoJGwbd8Zw2vgFFyVnxPaQdAainYeaFWZcRXj29l6MvhBctDxNbbwec2uHIz-q71_bbEHuP2vbShT-P-MH1fFKfOdAkvj-eieP5z93R7X63__X24Xa0ry6UYKiao5E5YKeu2AcpraSgaJwnbMMG4A8WUYJuNVcYBFxSxFYYQY2qQmMfYoriZc19Mpw_R701818F4fb9a6-kNQAIFql5JZn_O7CGG_yOmQe99sth1pscwJk2AySarYBNKZ9TGkFJE95lNQE9O9U5PTvXkVEMurvLQj2O-SdZ0Lpre-vQ5SRtQUvJp5-uZcyZos42ZeX7MQXX2PkEiE79nArO67D_qZD32NsuPaAfdBv_VIh9rCZPh</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Zhao, Hai-xiang</creator><creator>Magoulès, Frédéric</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1198-7539</orcidid></search><sort><creationdate>20120801</creationdate><title>A review on the prediction of building energy consumption</title><author>Zhao, Hai-xiang ; Magoulès, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Building</topic><topic>buildings</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Engineering methods</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Prediction</topic><topic>problem solving</topic><topic>statistical analysis</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hai-xiang</creatorcontrib><creatorcontrib>Magoulès, Frédéric</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Renewable &amp; sustainable energy reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hai-xiang</au><au>Magoulès, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on the prediction of building energy consumption</atitle><jtitle>Renewable &amp; sustainable energy reviews</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>16</volume><issue>6</issue><spage>3586</spage><epage>3592</epage><pages>3586-3592</pages><issn>1364-0321</issn><eissn>1879-0690</eissn><abstract>The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.rser.2012.02.049</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1198-7539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-0321
ispartof Renewable & sustainable energy reviews, 2012-08, Vol.16 (6), p.3586-3592
issn 1364-0321
1879-0690
language eng
recordid cdi_hal_primary_oai_HAL_hal_00802029v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Building
buildings
Energy
Energy consumption
Engineering methods
Exact sciences and technology
Mathematics
Prediction
problem solving
statistical analysis
Statistical models
Statistics
weather
title A review on the prediction of building energy consumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20the%20prediction%20of%20building%20energy%20consumption&rft.jtitle=Renewable%20&%20sustainable%20energy%20reviews&rft.au=Zhao,%20Hai-xiang&rft.date=2012-08-01&rft.volume=16&rft.issue=6&rft.spage=3586&rft.epage=3592&rft.pages=3586-3592&rft.issn=1364-0321&rft.eissn=1879-0690&rft_id=info:doi/10.1016/j.rser.2012.02.049&rft_dat=%3Cproquest_hal_p%3E1038613631%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038613631&rft_id=info:pmid/&rft_els_id=S1364032112001438&rfr_iscdi=true