A review on the prediction of building energy consumption
The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurat...
Gespeichert in:
Veröffentlicht in: | Renewable & sustainable energy reviews 2012-08, Vol.16 (6), p.3586-3592 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3592 |
---|---|
container_issue | 6 |
container_start_page | 3586 |
container_title | Renewable & sustainable energy reviews |
container_volume | 16 |
creator | Zhao, Hai-xiang Magoulès, Frédéric |
description | The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference. |
doi_str_mv | 10.1016/j.rser.2012.02.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00802029v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364032112001438</els_id><sourcerecordid>1038613631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</originalsourceid><addsrcrecordid>eNp9kE1LJDEQhhtZQXf0D3ixLwvroWcrH91JYC-DuKswsAf1HDLpypihpzObdCv-e9P04FEoSCp56qV4iuKKwJIAaX7tljFhXFIgdAm5uDopzokUqoJGwbd8Zw2vgFFyVnxPaQdAainYeaFWZcRXj29l6MvhBctDxNbbwec2uHIz-q71_bbEHuP2vbShT-P-MH1fFKfOdAkvj-eieP5z93R7X63__X24Xa0ry6UYKiao5E5YKeu2AcpraSgaJwnbMMG4A8WUYJuNVcYBFxSxFYYQY2qQmMfYoriZc19Mpw_R701818F4fb9a6-kNQAIFql5JZn_O7CGG_yOmQe99sth1pscwJk2AySarYBNKZ9TGkFJE95lNQE9O9U5PTvXkVEMurvLQj2O-SdZ0Lpre-vQ5SRtQUvJp5-uZcyZos42ZeX7MQXX2PkEiE79nArO67D_qZD32NsuPaAfdBv_VIh9rCZPh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038613631</pqid></control><display><type>article</type><title>A review on the prediction of building energy consumption</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Hai-xiang ; Magoulès, Frédéric</creator><creatorcontrib>Zhao, Hai-xiang ; Magoulès, Frédéric</creatorcontrib><description>The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.</description><identifier>ISSN: 1364-0321</identifier><identifier>EISSN: 1879-0690</identifier><identifier>DOI: 10.1016/j.rser.2012.02.049</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Building ; buildings ; Energy ; Energy consumption ; Engineering methods ; Exact sciences and technology ; Mathematics ; Prediction ; problem solving ; statistical analysis ; Statistical models ; Statistics ; weather</subject><ispartof>Renewable & sustainable energy reviews, 2012-08, Vol.16 (6), p.3586-3592</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</citedby><cites>FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</cites><orcidid>0000-0002-1198-7539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364032112001438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26098848$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00802029$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hai-xiang</creatorcontrib><creatorcontrib>Magoulès, Frédéric</creatorcontrib><title>A review on the prediction of building energy consumption</title><title>Renewable & sustainable energy reviews</title><description>The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Building</subject><subject>buildings</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Engineering methods</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Prediction</subject><subject>problem solving</subject><subject>statistical analysis</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>weather</subject><issn>1364-0321</issn><issn>1879-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LJDEQhhtZQXf0D3ixLwvroWcrH91JYC-DuKswsAf1HDLpypihpzObdCv-e9P04FEoSCp56qV4iuKKwJIAaX7tljFhXFIgdAm5uDopzokUqoJGwbd8Zw2vgFFyVnxPaQdAainYeaFWZcRXj29l6MvhBctDxNbbwec2uHIz-q71_bbEHuP2vbShT-P-MH1fFKfOdAkvj-eieP5z93R7X63__X24Xa0ry6UYKiao5E5YKeu2AcpraSgaJwnbMMG4A8WUYJuNVcYBFxSxFYYQY2qQmMfYoriZc19Mpw_R701818F4fb9a6-kNQAIFql5JZn_O7CGG_yOmQe99sth1pscwJk2AySarYBNKZ9TGkFJE95lNQE9O9U5PTvXkVEMurvLQj2O-SdZ0Lpre-vQ5SRtQUvJp5-uZcyZos42ZeX7MQXX2PkEiE79nArO67D_qZD32NsuPaAfdBv_VIh9rCZPh</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Zhao, Hai-xiang</creator><creator>Magoulès, Frédéric</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1198-7539</orcidid></search><sort><creationdate>20120801</creationdate><title>A review on the prediction of building energy consumption</title><author>Zhao, Hai-xiang ; Magoulès, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-37284f7c885d602458a2eaf813b3734f093973bbc9af0472eed7a11aa508e7c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Building</topic><topic>buildings</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Engineering methods</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Prediction</topic><topic>problem solving</topic><topic>statistical analysis</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hai-xiang</creatorcontrib><creatorcontrib>Magoulès, Frédéric</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Renewable & sustainable energy reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hai-xiang</au><au>Magoulès, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on the prediction of building energy consumption</atitle><jtitle>Renewable & sustainable energy reviews</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>16</volume><issue>6</issue><spage>3586</spage><epage>3592</epage><pages>3586-3592</pages><issn>1364-0321</issn><eissn>1879-0690</eissn><abstract>The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.rser.2012.02.049</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1198-7539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-0321 |
ispartof | Renewable & sustainable energy reviews, 2012-08, Vol.16 (6), p.3586-3592 |
issn | 1364-0321 1879-0690 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00802029v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial intelligence Building buildings Energy Energy consumption Engineering methods Exact sciences and technology Mathematics Prediction problem solving statistical analysis Statistical models Statistics weather |
title | A review on the prediction of building energy consumption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20the%20prediction%20of%20building%20energy%20consumption&rft.jtitle=Renewable%20&%20sustainable%20energy%20reviews&rft.au=Zhao,%20Hai-xiang&rft.date=2012-08-01&rft.volume=16&rft.issue=6&rft.spage=3586&rft.epage=3592&rft.pages=3586-3592&rft.issn=1364-0321&rft.eissn=1879-0690&rft_id=info:doi/10.1016/j.rser.2012.02.049&rft_dat=%3Cproquest_hal_p%3E1038613631%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038613631&rft_id=info:pmid/&rft_els_id=S1364032112001438&rfr_iscdi=true |