A new approach to handle wave breaking in fully non-linear Boussinesq models

In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperboli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coastal engineering (Amsterdam) 2012-09, Vol.67, p.54-66
Hauptverfasser: Tissier, M., Bonneton, P., Marche, F., Chazel, F., Lannes, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue
container_start_page 54
container_title Coastal engineering (Amsterdam)
container_volume 67
creator Tissier, M.
Bonneton, P.
Marche, F.
Chazel, F.
Lannes, D.
description In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking. ► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency.
doi_str_mv 10.1016/j.coastaleng.2012.04.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00798996v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378383912000749</els_id><sourcerecordid>1028026645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</originalsourceid><addsrcrecordid>eNqFkE1vGyEQhlHUSnHT_AculdrDbmCX5ePoRG1TyVIv7RmNYTbGwawDa0f598VylB7DZRB6Zl7mIYRy1nLG5c22dROUGSKmh7ZjvGuZaBkTF2TBteoa1SvzgSxYr3TT695ckk-lbFk9Ug8LslrShM8U9vs8gdvQeaIbSD4ifYYj0nVGeAzpgYZEx0OMLzRNqYkhIWR6Ox1KqdfyRHeTx1g-k48jxILXr_WK_P3x_c_dfbP6_fPX3XLVOMGHuVkbpZ0SaxyM9MZLj4MaBAc9SC30wJnvO2XGTioBknkjRuE66bUHJfxay_6KfDvP3UC0-xx2kF_sBMHeL1f29MaYMtoYeeSV_Xpm64JPByyz3YXiMEZIWP9vOes066QUQ0X1GXV5KiXj-DabM3uSbbf2v2x7km2ZqGGitn55TYHiII4Zkgvlrb-T1b9ip4jbM1dt4TFgtsUFTA59yOhm66fwftg_hXyYjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028026645</pqid></control><display><type>article</type><title>A new approach to handle wave breaking in fully non-linear Boussinesq models</title><source>Elsevier ScienceDirect Journals</source><creator>Tissier, M. ; Bonneton, P. ; Marche, F. ; Chazel, F. ; Lannes, D.</creator><creatorcontrib>Tissier, M. ; Bonneton, P. ; Marche, F. ; Chazel, F. ; Lannes, D.</creatorcontrib><description>In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking. ► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency.</description><identifier>ISSN: 0378-3839</identifier><identifier>EISSN: 1872-7379</identifier><identifier>DOI: 10.1016/j.coastaleng.2012.04.004</identifier><identifier>CODEN: COENDE</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Breaking ; Breaking model ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Finite volume ; Fully non-linear Boussinesq model ; Geomorphology, landform evolution ; Handles ; Marine and continental quaternary ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinearity ; Numerical Analysis ; Ocean, Atmosphere ; Sciences of the Universe ; Shallow water equations ; Shock theory ; Surficial geology ; Wave breaking ; Wave fronts</subject><ispartof>Coastal engineering (Amsterdam), 2012-09, Vol.67, p.54-66</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</citedby><cites>FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</cites><orcidid>0000-0002-1484-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378383912000749$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26037705$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00798996$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tissier, M.</creatorcontrib><creatorcontrib>Bonneton, P.</creatorcontrib><creatorcontrib>Marche, F.</creatorcontrib><creatorcontrib>Chazel, F.</creatorcontrib><creatorcontrib>Lannes, D.</creatorcontrib><title>A new approach to handle wave breaking in fully non-linear Boussinesq models</title><title>Coastal engineering (Amsterdam)</title><description>In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking. ► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency.</description><subject>Breaking</subject><subject>Breaking model</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Finite volume</subject><subject>Fully non-linear Boussinesq model</subject><subject>Geomorphology, landform evolution</subject><subject>Handles</subject><subject>Marine and continental quaternary</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Ocean, Atmosphere</subject><subject>Sciences of the Universe</subject><subject>Shallow water equations</subject><subject>Shock theory</subject><subject>Surficial geology</subject><subject>Wave breaking</subject><subject>Wave fronts</subject><issn>0378-3839</issn><issn>1872-7379</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vGyEQhlHUSnHT_AculdrDbmCX5ePoRG1TyVIv7RmNYTbGwawDa0f598VylB7DZRB6Zl7mIYRy1nLG5c22dROUGSKmh7ZjvGuZaBkTF2TBteoa1SvzgSxYr3TT695ckk-lbFk9Ug8LslrShM8U9vs8gdvQeaIbSD4ifYYj0nVGeAzpgYZEx0OMLzRNqYkhIWR6Ox1KqdfyRHeTx1g-k48jxILXr_WK_P3x_c_dfbP6_fPX3XLVOMGHuVkbpZ0SaxyM9MZLj4MaBAc9SC30wJnvO2XGTioBknkjRuE66bUHJfxay_6KfDvP3UC0-xx2kF_sBMHeL1f29MaYMtoYeeSV_Xpm64JPByyz3YXiMEZIWP9vOes066QUQ0X1GXV5KiXj-DabM3uSbbf2v2x7km2ZqGGitn55TYHiII4Zkgvlrb-T1b9ip4jbM1dt4TFgtsUFTA59yOhm66fwftg_hXyYjw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Tissier, M.</creator><creator>Bonneton, P.</creator><creator>Marche, F.</creator><creator>Chazel, F.</creator><creator>Lannes, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1484-9764</orcidid></search><sort><creationdate>20120901</creationdate><title>A new approach to handle wave breaking in fully non-linear Boussinesq models</title><author>Tissier, M. ; Bonneton, P. ; Marche, F. ; Chazel, F. ; Lannes, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Breaking</topic><topic>Breaking model</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Finite volume</topic><topic>Fully non-linear Boussinesq model</topic><topic>Geomorphology, landform evolution</topic><topic>Handles</topic><topic>Marine and continental quaternary</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Ocean, Atmosphere</topic><topic>Sciences of the Universe</topic><topic>Shallow water equations</topic><topic>Shock theory</topic><topic>Surficial geology</topic><topic>Wave breaking</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tissier, M.</creatorcontrib><creatorcontrib>Bonneton, P.</creatorcontrib><creatorcontrib>Marche, F.</creatorcontrib><creatorcontrib>Chazel, F.</creatorcontrib><creatorcontrib>Lannes, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Coastal engineering (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tissier, M.</au><au>Bonneton, P.</au><au>Marche, F.</au><au>Chazel, F.</au><au>Lannes, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to handle wave breaking in fully non-linear Boussinesq models</atitle><jtitle>Coastal engineering (Amsterdam)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>67</volume><spage>54</spage><epage>66</epage><pages>54-66</pages><issn>0378-3839</issn><eissn>1872-7379</eissn><coden>COENDE</coden><abstract>In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking. ► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.coastaleng.2012.04.004</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1484-9764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-3839
ispartof Coastal engineering (Amsterdam), 2012-09, Vol.67, p.54-66
issn 0378-3839
1872-7379
language eng
recordid cdi_hal_primary_oai_HAL_hal_00798996v1
source Elsevier ScienceDirect Journals
subjects Breaking
Breaking model
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Finite volume
Fully non-linear Boussinesq model
Geomorphology, landform evolution
Handles
Marine and continental quaternary
Mathematical analysis
Mathematical models
Mathematics
Nonlinearity
Numerical Analysis
Ocean, Atmosphere
Sciences of the Universe
Shallow water equations
Shock theory
Surficial geology
Wave breaking
Wave fronts
title A new approach to handle wave breaking in fully non-linear Boussinesq models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20handle%20wave%20breaking%20in%20fully%20non-linear%20Boussinesq%20models&rft.jtitle=Coastal%20engineering%20(Amsterdam)&rft.au=Tissier,%20M.&rft.date=2012-09-01&rft.volume=67&rft.spage=54&rft.epage=66&rft.pages=54-66&rft.issn=0378-3839&rft.eissn=1872-7379&rft.coden=COENDE&rft_id=info:doi/10.1016/j.coastaleng.2012.04.004&rft_dat=%3Cproquest_hal_p%3E1028026645%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028026645&rft_id=info:pmid/&rft_els_id=S0378383912000749&rfr_iscdi=true