A new approach to handle wave breaking in fully non-linear Boussinesq models
In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperboli...
Gespeichert in:
Veröffentlicht in: | Coastal engineering (Amsterdam) 2012-09, Vol.67, p.54-66 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | |
container_start_page | 54 |
container_title | Coastal engineering (Amsterdam) |
container_volume | 67 |
creator | Tissier, M. Bonneton, P. Marche, F. Chazel, F. Lannes, D. |
description | In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking.
► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency. |
doi_str_mv | 10.1016/j.coastaleng.2012.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00798996v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378383912000749</els_id><sourcerecordid>1028026645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</originalsourceid><addsrcrecordid>eNqFkE1vGyEQhlHUSnHT_AculdrDbmCX5ePoRG1TyVIv7RmNYTbGwawDa0f598VylB7DZRB6Zl7mIYRy1nLG5c22dROUGSKmh7ZjvGuZaBkTF2TBteoa1SvzgSxYr3TT695ckk-lbFk9Ug8LslrShM8U9vs8gdvQeaIbSD4ifYYj0nVGeAzpgYZEx0OMLzRNqYkhIWR6Ox1KqdfyRHeTx1g-k48jxILXr_WK_P3x_c_dfbP6_fPX3XLVOMGHuVkbpZ0SaxyM9MZLj4MaBAc9SC30wJnvO2XGTioBknkjRuE66bUHJfxay_6KfDvP3UC0-xx2kF_sBMHeL1f29MaYMtoYeeSV_Xpm64JPByyz3YXiMEZIWP9vOes066QUQ0X1GXV5KiXj-DabM3uSbbf2v2x7km2ZqGGitn55TYHiII4Zkgvlrb-T1b9ip4jbM1dt4TFgtsUFTA59yOhm66fwftg_hXyYjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028026645</pqid></control><display><type>article</type><title>A new approach to handle wave breaking in fully non-linear Boussinesq models</title><source>Elsevier ScienceDirect Journals</source><creator>Tissier, M. ; Bonneton, P. ; Marche, F. ; Chazel, F. ; Lannes, D.</creator><creatorcontrib>Tissier, M. ; Bonneton, P. ; Marche, F. ; Chazel, F. ; Lannes, D.</creatorcontrib><description>In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking.
► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency.</description><identifier>ISSN: 0378-3839</identifier><identifier>EISSN: 1872-7379</identifier><identifier>DOI: 10.1016/j.coastaleng.2012.04.004</identifier><identifier>CODEN: COENDE</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Breaking ; Breaking model ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Finite volume ; Fully non-linear Boussinesq model ; Geomorphology, landform evolution ; Handles ; Marine and continental quaternary ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinearity ; Numerical Analysis ; Ocean, Atmosphere ; Sciences of the Universe ; Shallow water equations ; Shock theory ; Surficial geology ; Wave breaking ; Wave fronts</subject><ispartof>Coastal engineering (Amsterdam), 2012-09, Vol.67, p.54-66</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</citedby><cites>FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</cites><orcidid>0000-0002-1484-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378383912000749$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26037705$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00798996$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tissier, M.</creatorcontrib><creatorcontrib>Bonneton, P.</creatorcontrib><creatorcontrib>Marche, F.</creatorcontrib><creatorcontrib>Chazel, F.</creatorcontrib><creatorcontrib>Lannes, D.</creatorcontrib><title>A new approach to handle wave breaking in fully non-linear Boussinesq models</title><title>Coastal engineering (Amsterdam)</title><description>In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking.
► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency.</description><subject>Breaking</subject><subject>Breaking model</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Finite volume</subject><subject>Fully non-linear Boussinesq model</subject><subject>Geomorphology, landform evolution</subject><subject>Handles</subject><subject>Marine and continental quaternary</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Numerical Analysis</subject><subject>Ocean, Atmosphere</subject><subject>Sciences of the Universe</subject><subject>Shallow water equations</subject><subject>Shock theory</subject><subject>Surficial geology</subject><subject>Wave breaking</subject><subject>Wave fronts</subject><issn>0378-3839</issn><issn>1872-7379</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vGyEQhlHUSnHT_AculdrDbmCX5ePoRG1TyVIv7RmNYTbGwawDa0f598VylB7DZRB6Zl7mIYRy1nLG5c22dROUGSKmh7ZjvGuZaBkTF2TBteoa1SvzgSxYr3TT695ckk-lbFk9Ug8LslrShM8U9vs8gdvQeaIbSD4ifYYj0nVGeAzpgYZEx0OMLzRNqYkhIWR6Ox1KqdfyRHeTx1g-k48jxILXr_WK_P3x_c_dfbP6_fPX3XLVOMGHuVkbpZ0SaxyM9MZLj4MaBAc9SC30wJnvO2XGTioBknkjRuE66bUHJfxay_6KfDvP3UC0-xx2kF_sBMHeL1f29MaYMtoYeeSV_Xpm64JPByyz3YXiMEZIWP9vOes066QUQ0X1GXV5KiXj-DabM3uSbbf2v2x7km2ZqGGitn55TYHiII4Zkgvlrb-T1b9ip4jbM1dt4TFgtsUFTA59yOhm66fwftg_hXyYjw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Tissier, M.</creator><creator>Bonneton, P.</creator><creator>Marche, F.</creator><creator>Chazel, F.</creator><creator>Lannes, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1484-9764</orcidid></search><sort><creationdate>20120901</creationdate><title>A new approach to handle wave breaking in fully non-linear Boussinesq models</title><author>Tissier, M. ; Bonneton, P. ; Marche, F. ; Chazel, F. ; Lannes, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b978c74be596d9d6de57541a856848510d3279f2674a60d94f4c26d8da74db863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Breaking</topic><topic>Breaking model</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Finite volume</topic><topic>Fully non-linear Boussinesq model</topic><topic>Geomorphology, landform evolution</topic><topic>Handles</topic><topic>Marine and continental quaternary</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Numerical Analysis</topic><topic>Ocean, Atmosphere</topic><topic>Sciences of the Universe</topic><topic>Shallow water equations</topic><topic>Shock theory</topic><topic>Surficial geology</topic><topic>Wave breaking</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tissier, M.</creatorcontrib><creatorcontrib>Bonneton, P.</creatorcontrib><creatorcontrib>Marche, F.</creatorcontrib><creatorcontrib>Chazel, F.</creatorcontrib><creatorcontrib>Lannes, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Coastal engineering (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tissier, M.</au><au>Bonneton, P.</au><au>Marche, F.</au><au>Chazel, F.</au><au>Lannes, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new approach to handle wave breaking in fully non-linear Boussinesq models</atitle><jtitle>Coastal engineering (Amsterdam)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>67</volume><spage>54</spage><epage>66</epage><pages>54-66</pages><issn>0378-3839</issn><eissn>1872-7379</eissn><coden>COENDE</coden><abstract>In this paper, a new method to handle wave breaking in fully non-linear Boussinesq-type models is presented. The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations (namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equations to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating the efficiency of our simple treatment for wave breaking.
► A new method to treat wave breaking in fully non‐linear Boussinesq models is presented. ► Local switches to Non‐linear Shallow Water Equations are performed near the breaking fronts. ► Breaking wave fronts, handled as shocks by the NSWE, dissipate their energy naturally. ► The model encompasses treatment for both the initiation and termination of breaking. ► Extensive validations using laboratory data demonstrate the model efficiency.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.coastaleng.2012.04.004</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1484-9764</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3839 |
ispartof | Coastal engineering (Amsterdam), 2012-09, Vol.67, p.54-66 |
issn | 0378-3839 1872-7379 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00798996v1 |
source | Elsevier ScienceDirect Journals |
subjects | Breaking Breaking model Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Finite volume Fully non-linear Boussinesq model Geomorphology, landform evolution Handles Marine and continental quaternary Mathematical analysis Mathematical models Mathematics Nonlinearity Numerical Analysis Ocean, Atmosphere Sciences of the Universe Shallow water equations Shock theory Surficial geology Wave breaking Wave fronts |
title | A new approach to handle wave breaking in fully non-linear Boussinesq models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20approach%20to%20handle%20wave%20breaking%20in%20fully%20non-linear%20Boussinesq%20models&rft.jtitle=Coastal%20engineering%20(Amsterdam)&rft.au=Tissier,%20M.&rft.date=2012-09-01&rft.volume=67&rft.spage=54&rft.epage=66&rft.pages=54-66&rft.issn=0378-3839&rft.eissn=1872-7379&rft.coden=COENDE&rft_id=info:doi/10.1016/j.coastaleng.2012.04.004&rft_dat=%3Cproquest_hal_p%3E1028026645%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028026645&rft_id=info:pmid/&rft_els_id=S0378383912000749&rfr_iscdi=true |