A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid
In this note we propose a class of fully decoupled schemes (velocity–pressure–displacement splitting) for the coupling of an incompressible fluid with a thin-walled structure. The time splitting is achieved by combining an overall fractional-step time-marching of the system with a specific Robin–Neu...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2013-02, Vol.351 (3-4), p.161-164 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 3-4 |
container_start_page | 161 |
container_title | Comptes rendus. Mathématique |
container_volume | 351 |
creator | Fernández, Miguel Ángel Landajuela, Mikel |
description | In this note we propose a class of fully decoupled schemes (velocity–pressure–displacement splitting) for the coupling of an incompressible fluid with a thin-walled structure. The time splitting is achieved by combining an overall fractional-step time-marching of the system with a specific Robin–Neumann treatment of the interface coupling. The two variants considered yield unconditional stability. Numerical experiments in a benchmark show that, for one of them, the splitting does not compromises the optimal convergence rate.
Dans cette note, nous proposons un type de schéma totalement découplé (vitesse–pression–déplacement) pour le couplage dʼun fluide incompressible avec une structure mince. Le découplage en temps est obtenu en combinant un schéma à pas fractionnaire sur lʼensemble du système avec un traitement spécifique Robin–Neumann des conditions dʼinterface. Les deux variantes considérées sont inconditionnellement stables. Des expériences numériques montrent que, pour lʼune dʼelles, on obtient un taux de convergence optimal. |
doi_str_mv | 10.1016/j.crma.2013.02.015 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00795585v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X13000423</els_id><sourcerecordid>oai_HAL_hal_00795585v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a9702ae77214bed5aae7e78d2616c88e826cbbf8a07b7fcfceee6e89fc7c6d543</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYsoOKf_gKdcPbQm7Zq04GUMdcLAi4K3kH75QjO6diTpxv57UycePX2Px_s9-F6S3DOaMcr44zYDt1NZTlmR0TyjrLxIZkyIKi1KXl9GzQuWUlF8XSc33m9phGpRzxK9JGbsuhPRCMO471ATDy3ukJjBkdAisX1ApyDYoSeDISqatk-PqvvJBjdCGB2Sow0tUX2Mw7DbO_TeNl1s6Uarb5MrozqPd793nny-PH-s1unm_fVttdykUBSLkKpa0FyhEDlbNKhLFTWKSueccagqrHIOTWMqRUUjDBhARI5VbUAA1-WimCcP595WdXLv7E65kxyUlevlRk4epaIuy6o8sJjNz1lwg_cOzR_AqJw2lVs5bSqnTSXNZdw0Qk9nCOMXB4tOerDYA2rrEILUg_0P_wZMnoIn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fernández, Miguel Ángel ; Landajuela, Mikel</creator><creatorcontrib>Fernández, Miguel Ángel ; Landajuela, Mikel</creatorcontrib><description>In this note we propose a class of fully decoupled schemes (velocity–pressure–displacement splitting) for the coupling of an incompressible fluid with a thin-walled structure. The time splitting is achieved by combining an overall fractional-step time-marching of the system with a specific Robin–Neumann treatment of the interface coupling. The two variants considered yield unconditional stability. Numerical experiments in a benchmark show that, for one of them, the splitting does not compromises the optimal convergence rate.
Dans cette note, nous proposons un type de schéma totalement découplé (vitesse–pression–déplacement) pour le couplage dʼun fluide incompressible avec une structure mince. Le découplage en temps est obtenu en combinant un schéma à pas fractionnaire sur lʼensemble du système avec un traitement spécifique Robin–Neumann des conditions dʼinterface. Les deux variantes considérées sont inconditionnellement stables. Des expériences numériques montrent que, pour lʼune dʼelles, on obtient un taux de convergence optimal.</description><identifier>ISSN: 1631-073X</identifier><identifier>ISSN: 1778-3569</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/j.crma.2013.02.015</identifier><language>eng</language><publisher>Elsevier SAS</publisher><subject>Mathematics ; Numerical Analysis</subject><ispartof>Comptes rendus. Mathématique, 2013-02, Vol.351 (3-4), p.161-164</ispartof><rights>2013 Académie des sciences</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a9702ae77214bed5aae7e78d2616c88e826cbbf8a07b7fcfceee6e89fc7c6d543</citedby><cites>FETCH-LOGICAL-c334t-a9702ae77214bed5aae7e78d2616c88e826cbbf8a07b7fcfceee6e89fc7c6d543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631073X13000423$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00795585$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández, Miguel Ángel</creatorcontrib><creatorcontrib>Landajuela, Mikel</creatorcontrib><title>A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid</title><title>Comptes rendus. Mathématique</title><description>In this note we propose a class of fully decoupled schemes (velocity–pressure–displacement splitting) for the coupling of an incompressible fluid with a thin-walled structure. The time splitting is achieved by combining an overall fractional-step time-marching of the system with a specific Robin–Neumann treatment of the interface coupling. The two variants considered yield unconditional stability. Numerical experiments in a benchmark show that, for one of them, the splitting does not compromises the optimal convergence rate.
Dans cette note, nous proposons un type de schéma totalement découplé (vitesse–pression–déplacement) pour le couplage dʼun fluide incompressible avec une structure mince. Le découplage en temps est obtenu en combinant un schéma à pas fractionnaire sur lʼensemble du système avec un traitement spécifique Robin–Neumann des conditions dʼinterface. Les deux variantes considérées sont inconditionnellement stables. Des expériences numériques montrent que, pour lʼune dʼelles, on obtient un taux de convergence optimal.</description><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>1631-073X</issn><issn>1778-3569</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAYxYsoOKf_gKdcPbQm7Zq04GUMdcLAi4K3kH75QjO6diTpxv57UycePX2Px_s9-F6S3DOaMcr44zYDt1NZTlmR0TyjrLxIZkyIKi1KXl9GzQuWUlF8XSc33m9phGpRzxK9JGbsuhPRCMO471ATDy3ukJjBkdAisX1ApyDYoSeDISqatk-PqvvJBjdCGB2Sow0tUX2Mw7DbO_TeNl1s6Uarb5MrozqPd793nny-PH-s1unm_fVttdykUBSLkKpa0FyhEDlbNKhLFTWKSueccagqrHIOTWMqRUUjDBhARI5VbUAA1-WimCcP595WdXLv7E65kxyUlevlRk4epaIuy6o8sJjNz1lwg_cOzR_AqJw2lVs5bSqnTSXNZdw0Qk9nCOMXB4tOerDYA2rrEILUg_0P_wZMnoIn</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Fernández, Miguel Ángel</creator><creator>Landajuela, Mikel</creator><general>Elsevier SAS</general><general>Académie des sciences (Paris)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20130201</creationdate><title>A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid</title><author>Fernández, Miguel Ángel ; Landajuela, Mikel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a9702ae77214bed5aae7e78d2616c88e826cbbf8a07b7fcfceee6e89fc7c6d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández, Miguel Ángel</creatorcontrib><creatorcontrib>Landajuela, Mikel</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández, Miguel Ángel</au><au>Landajuela, Mikel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>351</volume><issue>3-4</issue><spage>161</spage><epage>164</epage><pages>161-164</pages><issn>1631-073X</issn><issn>1778-3569</issn><eissn>1778-3569</eissn><abstract>In this note we propose a class of fully decoupled schemes (velocity–pressure–displacement splitting) for the coupling of an incompressible fluid with a thin-walled structure. The time splitting is achieved by combining an overall fractional-step time-marching of the system with a specific Robin–Neumann treatment of the interface coupling. The two variants considered yield unconditional stability. Numerical experiments in a benchmark show that, for one of them, the splitting does not compromises the optimal convergence rate.
Dans cette note, nous proposons un type de schéma totalement découplé (vitesse–pression–déplacement) pour le couplage dʼun fluide incompressible avec une structure mince. Le découplage en temps est obtenu en combinant un schéma à pas fractionnaire sur lʼensemble du système avec un traitement spécifique Robin–Neumann des conditions dʼinterface. Les deux variantes considérées sont inconditionnellement stables. Des expériences numériques montrent que, pour lʼune dʼelles, on obtient un taux de convergence optimal.</abstract><pub>Elsevier SAS</pub><doi>10.1016/j.crma.2013.02.015</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1631-073X |
ispartof | Comptes rendus. Mathématique, 2013-02, Vol.351 (3-4), p.161-164 |
issn | 1631-073X 1778-3569 1778-3569 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00795585v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Mathematics Numerical Analysis |
title | A fully decoupled scheme for the interaction of a thin-walled structure with an incompressible fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fully%20decoupled%20scheme%20for%20the%20interaction%20of%20a%20thin-walled%20structure%20with%20an%20incompressible%20fluid&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Fern%C3%A1ndez,%20Miguel%20%C3%81ngel&rft.date=2013-02-01&rft.volume=351&rft.issue=3-4&rft.spage=161&rft.epage=164&rft.pages=161-164&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/j.crma.2013.02.015&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00795585v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1631073X13000423&rfr_iscdi=true |