Si–SiC core–shell nanowires

The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2013-01, Vol.363, p.158-163
Hauptverfasser: Ollivier, M., Latu-Romain, L., Martin, M., David, S., Mantoux, A., Bano, E., Soulière, V., Ferro, G., Baron, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue
container_start_page 158
container_title Journal of crystal growth
container_volume 363
creator Ollivier, M.
Latu-Romain, L.
Martin, M.
David, S.
Mantoux, A.
Bano, E.
Soulière, V.
Ferro, G.
Baron, T.
description The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors. ► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer
doi_str_mv 10.1016/j.jcrysgro.2012.10.039
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00794231v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024812007440</els_id><sourcerecordid>oai_HAL_hal_00794231v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</originalsourceid><addsrcrecordid>eNqFkEFPwyAYhonRxDn9C7qLBw-tH1Ao3FwWdSZLPEzPhAF1NLVdYJnZzf_gP_SXSFPdVQ5A3rzPR3gQusSQY8D8ts5rE_bxLXQ5AUxSmAOVR2iERUkzBkCO0SjtJANSiFN0FmMNkEgMI3S19N-fX0s_m5guuHSNa9c0k1a33YcPLp6jk0o30V38nmP0-nD_Mptni-fHp9l0kRla8m3mVtQRxwixjJSWMS5LzSVwYSVfabIqwUiQwjoj0nLSVAWrsBbYVloYVtAxuhnmrnWjNsG_67BXnfZqPl2oPgMoZUEo3uHU5UPXhC7G4KoDgEH1SlSt_pSoXkmfJyUJvB7AjY5GN1XQrfHxQBMugGIuUu9u6Ln04513QUXjXWucTUrMVtnO__fUDxiXenw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Si–SiC core–shell nanowires</title><source>Elsevier ScienceDirect Journals</source><creator>Ollivier, M. ; Latu-Romain, L. ; Martin, M. ; David, S. ; Mantoux, A. ; Bano, E. ; Soulière, V. ; Ferro, G. ; Baron, T.</creator><creatorcontrib>Ollivier, M. ; Latu-Romain, L. ; Martin, M. ; David, S. ; Mantoux, A. ; Bano, E. ; Soulière, V. ; Ferro, G. ; Baron, T.</creatorcontrib><description>The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors. ► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.10.039</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. FIB/SEM ; A3. Chemical vapor deposition processes ; B1. Nanowire ; B1. Silicon carbide ; B2. Semiconducting silicon ; B3. Core–shell ; Chemical Sciences ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Material chemistry ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Methods of nanofabrication ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires</subject><ispartof>Journal of crystal growth, 2013-01, Vol.363, p.158-163</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</citedby><cites>FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</cites><orcidid>0000-0002-9422-9636 ; 0000-0001-5005-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2012.10.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26803168$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00794231$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ollivier, M.</creatorcontrib><creatorcontrib>Latu-Romain, L.</creatorcontrib><creatorcontrib>Martin, M.</creatorcontrib><creatorcontrib>David, S.</creatorcontrib><creatorcontrib>Mantoux, A.</creatorcontrib><creatorcontrib>Bano, E.</creatorcontrib><creatorcontrib>Soulière, V.</creatorcontrib><creatorcontrib>Ferro, G.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><title>Si–SiC core–shell nanowires</title><title>Journal of crystal growth</title><description>The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors. ► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer</description><subject>A1. FIB/SEM</subject><subject>A3. Chemical vapor deposition processes</subject><subject>B1. Nanowire</subject><subject>B1. Silicon carbide</subject><subject>B2. Semiconducting silicon</subject><subject>B3. Core–shell</subject><subject>Chemical Sciences</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwyAYhonRxDn9C7qLBw-tH1Ao3FwWdSZLPEzPhAF1NLVdYJnZzf_gP_SXSFPdVQ5A3rzPR3gQusSQY8D8ts5rE_bxLXQ5AUxSmAOVR2iERUkzBkCO0SjtJANSiFN0FmMNkEgMI3S19N-fX0s_m5guuHSNa9c0k1a33YcPLp6jk0o30V38nmP0-nD_Mptni-fHp9l0kRla8m3mVtQRxwixjJSWMS5LzSVwYSVfabIqwUiQwjoj0nLSVAWrsBbYVloYVtAxuhnmrnWjNsG_67BXnfZqPl2oPgMoZUEo3uHU5UPXhC7G4KoDgEH1SlSt_pSoXkmfJyUJvB7AjY5GN1XQrfHxQBMugGIuUu9u6Ln04513QUXjXWucTUrMVtnO__fUDxiXenw</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Ollivier, M.</creator><creator>Latu-Romain, L.</creator><creator>Martin, M.</creator><creator>David, S.</creator><creator>Mantoux, A.</creator><creator>Bano, E.</creator><creator>Soulière, V.</creator><creator>Ferro, G.</creator><creator>Baron, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9422-9636</orcidid><orcidid>https://orcid.org/0000-0001-5005-6596</orcidid></search><sort><creationdate>20130115</creationdate><title>Si–SiC core–shell nanowires</title><author>Ollivier, M. ; Latu-Romain, L. ; Martin, M. ; David, S. ; Mantoux, A. ; Bano, E. ; Soulière, V. ; Ferro, G. ; Baron, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A1. FIB/SEM</topic><topic>A3. Chemical vapor deposition processes</topic><topic>B1. Nanowire</topic><topic>B1. Silicon carbide</topic><topic>B2. Semiconducting silicon</topic><topic>B3. Core–shell</topic><topic>Chemical Sciences</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ollivier, M.</creatorcontrib><creatorcontrib>Latu-Romain, L.</creatorcontrib><creatorcontrib>Martin, M.</creatorcontrib><creatorcontrib>David, S.</creatorcontrib><creatorcontrib>Mantoux, A.</creatorcontrib><creatorcontrib>Bano, E.</creatorcontrib><creatorcontrib>Soulière, V.</creatorcontrib><creatorcontrib>Ferro, G.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ollivier, M.</au><au>Latu-Romain, L.</au><au>Martin, M.</au><au>David, S.</au><au>Mantoux, A.</au><au>Bano, E.</au><au>Soulière, V.</au><au>Ferro, G.</au><au>Baron, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si–SiC core–shell nanowires</atitle><jtitle>Journal of crystal growth</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>363</volume><spage>158</spage><epage>163</epage><pages>158-163</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors. ► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2012.10.039</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9422-9636</orcidid><orcidid>https://orcid.org/0000-0001-5005-6596</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2013-01, Vol.363, p.158-163
issn 0022-0248
1873-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_00794231v1
source Elsevier ScienceDirect Journals
subjects A1. FIB/SEM
A3. Chemical vapor deposition processes
B1. Nanowire
B1. Silicon carbide
B2. Semiconducting silicon
B3. Core–shell
Chemical Sciences
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Material chemistry
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Methods of nanofabrication
Nanoscale materials and structures: fabrication and characterization
Physics
Quantum wires
title Si–SiC core–shell nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%E2%80%93SiC%20core%E2%80%93shell%20nanowires&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Ollivier,%20M.&rft.date=2013-01-15&rft.volume=363&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2012.10.039&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00794231v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022024812007440&rfr_iscdi=true