Si–SiC core–shell nanowires
The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2013-01, Vol.363, p.158-163 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | |
container_start_page | 158 |
container_title | Journal of crystal growth |
container_volume | 363 |
creator | Ollivier, M. Latu-Romain, L. Martin, M. David, S. Mantoux, A. Bano, E. Soulière, V. Ferro, G. Baron, T. |
description | The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors.
► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer |
doi_str_mv | 10.1016/j.jcrysgro.2012.10.039 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00794231v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024812007440</els_id><sourcerecordid>oai_HAL_hal_00794231v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</originalsourceid><addsrcrecordid>eNqFkEFPwyAYhonRxDn9C7qLBw-tH1Ao3FwWdSZLPEzPhAF1NLVdYJnZzf_gP_SXSFPdVQ5A3rzPR3gQusSQY8D8ts5rE_bxLXQ5AUxSmAOVR2iERUkzBkCO0SjtJANSiFN0FmMNkEgMI3S19N-fX0s_m5guuHSNa9c0k1a33YcPLp6jk0o30V38nmP0-nD_Mptni-fHp9l0kRla8m3mVtQRxwixjJSWMS5LzSVwYSVfabIqwUiQwjoj0nLSVAWrsBbYVloYVtAxuhnmrnWjNsG_67BXnfZqPl2oPgMoZUEo3uHU5UPXhC7G4KoDgEH1SlSt_pSoXkmfJyUJvB7AjY5GN1XQrfHxQBMugGIuUu9u6Ln04513QUXjXWucTUrMVtnO__fUDxiXenw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Si–SiC core–shell nanowires</title><source>Elsevier ScienceDirect Journals</source><creator>Ollivier, M. ; Latu-Romain, L. ; Martin, M. ; David, S. ; Mantoux, A. ; Bano, E. ; Soulière, V. ; Ferro, G. ; Baron, T.</creator><creatorcontrib>Ollivier, M. ; Latu-Romain, L. ; Martin, M. ; David, S. ; Mantoux, A. ; Bano, E. ; Soulière, V. ; Ferro, G. ; Baron, T.</creatorcontrib><description>The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors.
► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2012.10.039</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. FIB/SEM ; A3. Chemical vapor deposition processes ; B1. Nanowire ; B1. Silicon carbide ; B2. Semiconducting silicon ; B3. Core–shell ; Chemical Sciences ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Material chemistry ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Methods of nanofabrication ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires</subject><ispartof>Journal of crystal growth, 2013-01, Vol.363, p.158-163</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</citedby><cites>FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</cites><orcidid>0000-0002-9422-9636 ; 0000-0001-5005-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2012.10.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26803168$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00794231$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ollivier, M.</creatorcontrib><creatorcontrib>Latu-Romain, L.</creatorcontrib><creatorcontrib>Martin, M.</creatorcontrib><creatorcontrib>David, S.</creatorcontrib><creatorcontrib>Mantoux, A.</creatorcontrib><creatorcontrib>Bano, E.</creatorcontrib><creatorcontrib>Soulière, V.</creatorcontrib><creatorcontrib>Ferro, G.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><title>Si–SiC core–shell nanowires</title><title>Journal of crystal growth</title><description>The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors.
► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer</description><subject>A1. FIB/SEM</subject><subject>A3. Chemical vapor deposition processes</subject><subject>B1. Nanowire</subject><subject>B1. Silicon carbide</subject><subject>B2. Semiconducting silicon</subject><subject>B3. Core–shell</subject><subject>Chemical Sciences</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwyAYhonRxDn9C7qLBw-tH1Ao3FwWdSZLPEzPhAF1NLVdYJnZzf_gP_SXSFPdVQ5A3rzPR3gQusSQY8D8ts5rE_bxLXQ5AUxSmAOVR2iERUkzBkCO0SjtJANSiFN0FmMNkEgMI3S19N-fX0s_m5guuHSNa9c0k1a33YcPLp6jk0o30V38nmP0-nD_Mptni-fHp9l0kRla8m3mVtQRxwixjJSWMS5LzSVwYSVfabIqwUiQwjoj0nLSVAWrsBbYVloYVtAxuhnmrnWjNsG_67BXnfZqPl2oPgMoZUEo3uHU5UPXhC7G4KoDgEH1SlSt_pSoXkmfJyUJvB7AjY5GN1XQrfHxQBMugGIuUu9u6Ln04513QUXjXWucTUrMVtnO__fUDxiXenw</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Ollivier, M.</creator><creator>Latu-Romain, L.</creator><creator>Martin, M.</creator><creator>David, S.</creator><creator>Mantoux, A.</creator><creator>Bano, E.</creator><creator>Soulière, V.</creator><creator>Ferro, G.</creator><creator>Baron, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9422-9636</orcidid><orcidid>https://orcid.org/0000-0001-5005-6596</orcidid></search><sort><creationdate>20130115</creationdate><title>Si–SiC core–shell nanowires</title><author>Ollivier, M. ; Latu-Romain, L. ; Martin, M. ; David, S. ; Mantoux, A. ; Bano, E. ; Soulière, V. ; Ferro, G. ; Baron, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-eb3e2e522d527d55697a69068d96ba2b70c9098dec8888e9cf45f1a81dfa8c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A1. FIB/SEM</topic><topic>A3. Chemical vapor deposition processes</topic><topic>B1. Nanowire</topic><topic>B1. Silicon carbide</topic><topic>B2. Semiconducting silicon</topic><topic>B3. Core–shell</topic><topic>Chemical Sciences</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ollivier, M.</creatorcontrib><creatorcontrib>Latu-Romain, L.</creatorcontrib><creatorcontrib>Martin, M.</creatorcontrib><creatorcontrib>David, S.</creatorcontrib><creatorcontrib>Mantoux, A.</creatorcontrib><creatorcontrib>Bano, E.</creatorcontrib><creatorcontrib>Soulière, V.</creatorcontrib><creatorcontrib>Ferro, G.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ollivier, M.</au><au>Latu-Romain, L.</au><au>Martin, M.</au><au>David, S.</au><au>Mantoux, A.</au><au>Bano, E.</au><au>Soulière, V.</au><au>Ferro, G.</au><au>Baron, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si–SiC core–shell nanowires</atitle><jtitle>Journal of crystal growth</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>363</volume><spage>158</spage><epage>163</epage><pages>158-163</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The objective of this study is to grow Si–SiC core–shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures ≥1000°C. Carburization of Si NWs leads to Si–SiC core–shell NWs with a thin (∼3nm), continuous and single crystalline cubic SiC shell. The 3C–SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C–SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors.
► Carburization of silicon nanowires. ► TEM study of the crystal growth of the SiC layer. ► Epitaxial growth of 3C–SiC on Si nanowires. ► Discussion of the Si diffusion through the SiC layer</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2012.10.039</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9422-9636</orcidid><orcidid>https://orcid.org/0000-0001-5005-6596</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2013-01, Vol.363, p.158-163 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00794231v1 |
source | Elsevier ScienceDirect Journals |
subjects | A1. FIB/SEM A3. Chemical vapor deposition processes B1. Nanowire B1. Silicon carbide B2. Semiconducting silicon B3. Core–shell Chemical Sciences Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology Exact sciences and technology Material chemistry Materials science Methods of deposition of films and coatings film growth and epitaxy Methods of nanofabrication Nanoscale materials and structures: fabrication and characterization Physics Quantum wires |
title | Si–SiC core–shell nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%E2%80%93SiC%20core%E2%80%93shell%20nanowires&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Ollivier,%20M.&rft.date=2013-01-15&rft.volume=363&rft.spage=158&rft.epage=163&rft.pages=158-163&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2012.10.039&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00794231v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022024812007440&rfr_iscdi=true |