On the Uniqueness for the Spatially Homogeneous Boltzmann Equation with a Strong Angular Singularity

We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2008-05, Vol.131 (4), p.749-781
Hauptverfasser: Fournier, Nicolas, Guérin, Hélène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!