Hyperbolic groups with planar boundaries
We prove that the class of convex-cocompact Kleinian groups is quasi-isometrically rigid. We also establish that a word hyperbolic group with a planar boundary different from the sphere is virtually a convex-cocompact Kleinian group provided that its boundary has Ahlfors regular conformal dimension...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2015-07, Vol.201 (1), p.239-307 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 1 |
container_start_page | 239 |
container_title | Inventiones mathematicae |
container_volume | 201 |
creator | Haïssinsky, Peter |
description | We prove that the class of convex-cocompact Kleinian groups is quasi-isometrically rigid. We also establish that a word hyperbolic group with a planar boundary different from the sphere is virtually a convex-cocompact Kleinian group provided that its boundary has Ahlfors regular conformal dimension strictly less than 2 or if it acts geometrically on a CAT(0) cube complex. |
doi_str_mv | 10.1007/s00222-014-0552-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00786453v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3722714221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-8655b4a441395b62fc10331fd2885e92b95d1dd38ad4b228563588e922f72ba3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwicYGDwV7_xDlWFaVIlbj0btmJ06YKcbAbaN8eV0GIC6eVdr4Z7Q5Ct5Q8UkLyp0gIAGBCOSZCAD6coQnlDDCFIj9HkyQTXBSUXKKrGHckgSyHCbpfHnsXrG-bMtsEP_Qx-2r226xvTWdCZv3QVSY0Ll6ji9q00d38zClaL57X8yVevb28zmcrXHLJ9lhJISw3nFNWCCuhLilhjNYVKCVcAbYQFa0qpkzFLYASkgmlkgB1DtawKXoYY7em1X1o3k04am8avZyt9GmXnlWSC_YJib0b2T74j8HFvd75IXTpOk1lQRiXCmSi6EiVwccYXP0bS4k-dafH7nSqRJ-604fkgdETE9ttXPiT_K_pG9O0btg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690346826</pqid></control><display><type>article</type><title>Hyperbolic groups with planar boundaries</title><source>SpringerNature Journals</source><creator>Haïssinsky, Peter</creator><creatorcontrib>Haïssinsky, Peter</creatorcontrib><description>We prove that the class of convex-cocompact Kleinian groups is quasi-isometrically rigid. We also establish that a word hyperbolic group with a planar boundary different from the sphere is virtually a convex-cocompact Kleinian group provided that its boundary has Ahlfors regular conformal dimension strictly less than 2 or if it acts geometrically on a CAT(0) cube complex.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-014-0552-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Group Theory ; Mathematics ; Mathematics and Statistics ; Metric Geometry</subject><ispartof>Inventiones mathematicae, 2015-07, Vol.201 (1), p.239-307</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-8655b4a441395b62fc10331fd2885e92b95d1dd38ad4b228563588e922f72ba3</citedby><cites>FETCH-LOGICAL-c463t-8655b4a441395b62fc10331fd2885e92b95d1dd38ad4b228563588e922f72ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-014-0552-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-014-0552-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00786453$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haïssinsky, Peter</creatorcontrib><title>Hyperbolic groups with planar boundaries</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We prove that the class of convex-cocompact Kleinian groups is quasi-isometrically rigid. We also establish that a word hyperbolic group with a planar boundary different from the sphere is virtually a convex-cocompact Kleinian group provided that its boundary has Ahlfors regular conformal dimension strictly less than 2 or if it acts geometrically on a CAT(0) cube complex.</description><subject>Group Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric Geometry</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwicYGDwV7_xDlWFaVIlbj0btmJ06YKcbAbaN8eV0GIC6eVdr4Z7Q5Ct5Q8UkLyp0gIAGBCOSZCAD6coQnlDDCFIj9HkyQTXBSUXKKrGHckgSyHCbpfHnsXrG-bMtsEP_Qx-2r226xvTWdCZv3QVSY0Ll6ji9q00d38zClaL57X8yVevb28zmcrXHLJ9lhJISw3nFNWCCuhLilhjNYVKCVcAbYQFa0qpkzFLYASkgmlkgB1DtawKXoYY7em1X1o3k04am8avZyt9GmXnlWSC_YJib0b2T74j8HFvd75IXTpOk1lQRiXCmSi6EiVwccYXP0bS4k-dafH7nSqRJ-604fkgdETE9ttXPiT_K_pG9O0btg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Haïssinsky, Peter</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150701</creationdate><title>Hyperbolic groups with planar boundaries</title><author>Haïssinsky, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-8655b4a441395b62fc10331fd2885e92b95d1dd38ad4b228563588e922f72ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Group Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haïssinsky, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haïssinsky, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic groups with planar boundaries</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>201</volume><issue>1</issue><spage>239</spage><epage>307</epage><pages>239-307</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We prove that the class of convex-cocompact Kleinian groups is quasi-isometrically rigid. We also establish that a word hyperbolic group with a planar boundary different from the sphere is virtually a convex-cocompact Kleinian group provided that its boundary has Ahlfors regular conformal dimension strictly less than 2 or if it acts geometrically on a CAT(0) cube complex.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-014-0552-x</doi><tpages>69</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2015-07, Vol.201 (1), p.239-307 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00786453v2 |
source | SpringerNature Journals |
subjects | Group Theory Mathematics Mathematics and Statistics Metric Geometry |
title | Hyperbolic groups with planar boundaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20groups%20with%20planar%20boundaries&rft.jtitle=Inventiones%20mathematicae&rft.au=Ha%C3%AFssinsky,%20Peter&rft.date=2015-07-01&rft.volume=201&rft.issue=1&rft.spage=239&rft.epage=307&rft.pages=239-307&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-014-0552-x&rft_dat=%3Cproquest_hal_p%3E3722714221%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690346826&rft_id=info:pmid/&rfr_iscdi=true |