Confidence estimation of feedback information for logic diagnosis

This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2013-03, Vol.26 (3)
Hauptverfasser: Duong, Quoc Bao, Zamaï, Éric, Tran-Dinh, K.-Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Engineering applications of artificial intelligence
container_volume 26
creator Duong, Quoc Bao
Zamaï, Éric
Tran-Dinh, K.-Q.
description This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.
doi_str_mv 10.1016/j.engappai.2012.08.008
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00784830v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00784830v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h119t-f36f15be2f3848561a62e2a58ec5c4ee6eeb441173e0f45b983a9a671f61b21c3</originalsourceid><addsrcrecordid>eNotjsFOhDAURbvQxHH0FwxbF-B7LRRYEqLOJCRudE0e5ZXpiJRQYuLfi3FW9-Yszr1CPCAkCKifzglPA80zuUQCygSKBKC4EjsoMxljmesbcRvCGQBUkeqdqGo_WdfzZDjisLovWp2fIm8jy9x3ZD4jN1m_XPjWotEPzkS9o2HywYU7cW1pDHx_yb34eHl-rw9x8_Z6rKsmPiGWa2yVtph1LO02XGQaSUuWlBVsMpMya-YuTRFzxWDTrCsLRSXpHK3GTqJRe_H47z3R2M7L9nT5aT259lA17R8DyDezgm9Uv0bnTtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Confidence estimation of feedback information for logic diagnosis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Duong, Quoc Bao ; Zamaï, Éric ; Tran-Dinh, K.-Q.</creator><creatorcontrib>Duong, Quoc Bao ; Zamaï, Éric ; Tran-Dinh, K.-Q.</creatorcontrib><description>This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.</description><identifier>ISSN: 0952-1976</identifier><identifier>DOI: 10.1016/j.engappai.2012.08.008</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Automatic ; Engineering Sciences</subject><ispartof>Engineering applications of artificial intelligence, 2013-03, Vol.26 (3)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2097-2205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00784830$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duong, Quoc Bao</creatorcontrib><creatorcontrib>Zamaï, Éric</creatorcontrib><creatorcontrib>Tran-Dinh, K.-Q.</creatorcontrib><title>Confidence estimation of feedback information for logic diagnosis</title><title>Engineering applications of artificial intelligence</title><description>This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.</description><subject>Automatic</subject><subject>Engineering Sciences</subject><issn>0952-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotjsFOhDAURbvQxHH0FwxbF-B7LRRYEqLOJCRudE0e5ZXpiJRQYuLfi3FW9-Yszr1CPCAkCKifzglPA80zuUQCygSKBKC4EjsoMxljmesbcRvCGQBUkeqdqGo_WdfzZDjisLovWp2fIm8jy9x3ZD4jN1m_XPjWotEPzkS9o2HywYU7cW1pDHx_yb34eHl-rw9x8_Z6rKsmPiGWa2yVtph1LO02XGQaSUuWlBVsMpMya-YuTRFzxWDTrCsLRSXpHK3GTqJRe_H47z3R2M7L9nT5aT259lA17R8DyDezgm9Uv0bnTtQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Duong, Quoc Bao</creator><creator>Zamaï, Éric</creator><creator>Tran-Dinh, K.-Q.</creator><general>Elsevier</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2097-2205</orcidid></search><sort><creationdate>20130301</creationdate><title>Confidence estimation of feedback information for logic diagnosis</title><author>Duong, Quoc Bao ; Zamaï, Éric ; Tran-Dinh, K.-Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h119t-f36f15be2f3848561a62e2a58ec5c4ee6eeb441173e0f45b983a9a671f61b21c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automatic</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Quoc Bao</creatorcontrib><creatorcontrib>Zamaï, Éric</creatorcontrib><creatorcontrib>Tran-Dinh, K.-Q.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Quoc Bao</au><au>Zamaï, Éric</au><au>Tran-Dinh, K.-Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence estimation of feedback information for logic diagnosis</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>26</volume><issue>3</issue><issn>0952-1976</issn><abstract>This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.</abstract><pub>Elsevier</pub><doi>10.1016/j.engappai.2012.08.008</doi><orcidid>https://orcid.org/0000-0003-2097-2205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2013-03, Vol.26 (3)
issn 0952-1976
language eng
recordid cdi_hal_primary_oai_HAL_hal_00784830v1
source Access via ScienceDirect (Elsevier)
subjects Automatic
Engineering Sciences
title Confidence estimation of feedback information for logic diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20estimation%20of%20feedback%20information%20for%20logic%20diagnosis&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Duong,%20Quoc%20Bao&rft.date=2013-03-01&rft.volume=26&rft.issue=3&rft.issn=0952-1976&rft_id=info:doi/10.1016/j.engappai.2012.08.008&rft_dat=%3Chal%3Eoai_HAL_hal_00784830v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true