Confidence estimation of feedback information for logic diagnosis
This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise repor...
Gespeichert in:
Veröffentlicht in: | Engineering applications of artificial intelligence 2013-03, Vol.26 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Engineering applications of artificial intelligence |
container_volume | 26 |
creator | Duong, Quoc Bao Zamaï, Éric Tran-Dinh, K.-Q. |
description | This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry. |
doi_str_mv | 10.1016/j.engappai.2012.08.008 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00784830v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00784830v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h119t-f36f15be2f3848561a62e2a58ec5c4ee6eeb441173e0f45b983a9a671f61b21c3</originalsourceid><addsrcrecordid>eNotjsFOhDAURbvQxHH0FwxbF-B7LRRYEqLOJCRudE0e5ZXpiJRQYuLfi3FW9-Yszr1CPCAkCKifzglPA80zuUQCygSKBKC4EjsoMxljmesbcRvCGQBUkeqdqGo_WdfzZDjisLovWp2fIm8jy9x3ZD4jN1m_XPjWotEPzkS9o2HywYU7cW1pDHx_yb34eHl-rw9x8_Z6rKsmPiGWa2yVtph1LO02XGQaSUuWlBVsMpMya-YuTRFzxWDTrCsLRSXpHK3GTqJRe_H47z3R2M7L9nT5aT259lA17R8DyDezgm9Uv0bnTtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Confidence estimation of feedback information for logic diagnosis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Duong, Quoc Bao ; Zamaï, Éric ; Tran-Dinh, K.-Q.</creator><creatorcontrib>Duong, Quoc Bao ; Zamaï, Éric ; Tran-Dinh, K.-Q.</creatorcontrib><description>This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.</description><identifier>ISSN: 0952-1976</identifier><identifier>DOI: 10.1016/j.engappai.2012.08.008</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Automatic ; Engineering Sciences</subject><ispartof>Engineering applications of artificial intelligence, 2013-03, Vol.26 (3)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2097-2205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00784830$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duong, Quoc Bao</creatorcontrib><creatorcontrib>Zamaï, Éric</creatorcontrib><creatorcontrib>Tran-Dinh, K.-Q.</creatorcontrib><title>Confidence estimation of feedback information for logic diagnosis</title><title>Engineering applications of artificial intelligence</title><description>This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.</description><subject>Automatic</subject><subject>Engineering Sciences</subject><issn>0952-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotjsFOhDAURbvQxHH0FwxbF-B7LRRYEqLOJCRudE0e5ZXpiJRQYuLfi3FW9-Yszr1CPCAkCKifzglPA80zuUQCygSKBKC4EjsoMxljmesbcRvCGQBUkeqdqGo_WdfzZDjisLovWp2fIm8jy9x3ZD4jN1m_XPjWotEPzkS9o2HywYU7cW1pDHx_yb34eHl-rw9x8_Z6rKsmPiGWa2yVtph1LO02XGQaSUuWlBVsMpMya-YuTRFzxWDTrCsLRSXpHK3GTqJRe_H47z3R2M7L9nT5aT259lA17R8DyDezgm9Uv0bnTtQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Duong, Quoc Bao</creator><creator>Zamaï, Éric</creator><creator>Tran-Dinh, K.-Q.</creator><general>Elsevier</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2097-2205</orcidid></search><sort><creationdate>20130301</creationdate><title>Confidence estimation of feedback information for logic diagnosis</title><author>Duong, Quoc Bao ; Zamaï, Éric ; Tran-Dinh, K.-Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h119t-f36f15be2f3848561a62e2a58ec5c4ee6eeb441173e0f45b983a9a671f61b21c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automatic</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Quoc Bao</creatorcontrib><creatorcontrib>Zamaï, Éric</creatorcontrib><creatorcontrib>Tran-Dinh, K.-Q.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Quoc Bao</au><au>Zamaï, Éric</au><au>Tran-Dinh, K.-Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence estimation of feedback information for logic diagnosis</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>26</volume><issue>3</issue><issn>0952-1976</issn><abstract>This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new 'CLFI' concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.</abstract><pub>Elsevier</pub><doi>10.1016/j.engappai.2012.08.008</doi><orcidid>https://orcid.org/0000-0003-2097-2205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-1976 |
ispartof | Engineering applications of artificial intelligence, 2013-03, Vol.26 (3) |
issn | 0952-1976 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00784830v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Automatic Engineering Sciences |
title | Confidence estimation of feedback information for logic diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20estimation%20of%20feedback%20information%20for%20logic%20diagnosis&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Duong,%20Quoc%20Bao&rft.date=2013-03-01&rft.volume=26&rft.issue=3&rft.issn=0952-1976&rft_id=info:doi/10.1016/j.engappai.2012.08.008&rft_dat=%3Chal%3Eoai_HAL_hal_00784830v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |