Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography

The rate of generation of internal gravity waves in the lee of small length scale topography by geostrophic flow in the World Ocean was estimated using linear theory with corrections for finite amplitude topography. Several global data sets were combined for the calculation including an ocean circul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2011-09, Vol.116 (C9), p.n/a, Article C09029
Hauptverfasser: Scott, R. B., Goff, J. A., Naveira Garabato, A. C., Nurser, A. J. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C9
container_start_page
container_title Journal of Geophysical Research
container_volume 116
creator Scott, R. B.
Goff, J. A.
Naveira Garabato, A. C.
Nurser, A. J. G.
description The rate of generation of internal gravity waves in the lee of small length scale topography by geostrophic flow in the World Ocean was estimated using linear theory with corrections for finite amplitude topography. Several global data sets were combined for the calculation including an ocean circulation model for the near‐bottom geostrophic flow statistics, over 500 abyssal current meter records, historical climatological data for the buoyancy frequency, and two independent estimates of the small scale topographic statistical properties. The first topography estimate was based on an empirically‐derived relationship between paleo‐spreading rates and abyssal hill roughness, with corrections for sedimentation. The second estimate was based on small‐scale (
doi_str_mv 10.1029/2011JC007005
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00783432v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467868071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5339-7b2f79b640d6b3ef8abebc8babdc43b2b750218e59b74461d63373e7738ac5a63</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoMouLS98wcErxScmu-Py7Lo1rIolqqXIclmuqnTyZjM7jr_3iwjpfRCcxPOyfOEw3kBeIXROUZEvycI46slQhIh_gwsCOaiIQSR52CBMFMNIkS-BGel3KF6GBcM4QUYVl1ytoPZjgHafgPLEPyYa8dvbbZ-DDmWMfoCUwtjX8u-vt1mu4_jBA92H-Bt6EPVY-qhm2qVypjTsI0etl06wLQPGY5pSFUattMpeNHaroSzv_cJ-Pbxw83ysll_WX1aXqwbyynVjXSkldrVITfC0dAq64Lzylm38Yw64iRHBKvAtZOMCbwRlEoapKTKem4FPQFv53-3tjNDjvc2TybZaC4v1ubYq5tSlFGyx5V9M7NDTr92oYzmPhYfus72Ie2KwRprLbDA7P8oQkoxKdQRff0EvUu74_qKUZpqjjlTFXo3Qz6nUnJoH2bFyBxzNY9zrTid8UPswvRP1lytrpeYIKGr1cxWjTL8frBs_mmEpJKbH59X5loodKO_fzWM_gG-hrJW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893951548</pqid></control><display><type>article</type><title>Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Scott, R. B. ; Goff, J. A. ; Naveira Garabato, A. C. ; Nurser, A. J. G.</creator><creatorcontrib>Scott, R. B. ; Goff, J. A. ; Naveira Garabato, A. C. ; Nurser, A. J. G.</creatorcontrib><description>The rate of generation of internal gravity waves in the lee of small length scale topography by geostrophic flow in the World Ocean was estimated using linear theory with corrections for finite amplitude topography. Several global data sets were combined for the calculation including an ocean circulation model for the near‐bottom geostrophic flow statistics, over 500 abyssal current meter records, historical climatological data for the buoyancy frequency, and two independent estimates of the small scale topographic statistical properties. The first topography estimate was based on an empirically‐derived relationship between paleo‐spreading rates and abyssal hill roughness, with corrections for sedimentation. The second estimate was based on small‐scale (&lt;100 km) roughness of satellite altimetry‐derived gravity field, using upward continuation relationships to derive estimates of abyssal hill roughness at the seafloor at scales less than approximately 20 km. The lee wave generation rate was found to be between 0.34 to 0.49 TW. The Southern Hemisphere produced 92% of the lee wave energy, with the Southern Ocean dominating. Strength of the bottom flow was the most important factor in producing the global pattern of generation rate, except in the Indian Ocean where extremely rough topography produced strong lee wave generation despite only moderate bottom flows. The results imply about one half of the mechanical power input to the ocean general circulation from the extra‐equatorial wind stress of the World Ocean results from abyssal lee wave generation. Topographic length scales between 176 m and 2.5 km (horizontal wavelengths between 1 and 16 km) accounted for 90% of the globally integrated generation. Key Points Lee wave generation accounts for about one half of mechanical energy dissipation Lee waves are generated by topography with wavelengths less than 5 km Lee waves are generated mostly in the Southern Ocean</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2011JC007005</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>abyssal hills ; Earth Sciences ; Energy dissipation ; Geophysics ; Gravity waves ; internal gravity waves ; Internal waves ; lee wave generation ; Marine ; mechanical energy budget ; Ocean circulation ; Ocean floor ; Oceanography ; Physical oceanography ; Satellite altimetry ; Sciences of the Universe ; Topography ; Water circulation ; Wave energy ; Wavelengths</subject><ispartof>Journal of Geophysical Research, 2011-09, Vol.116 (C9), p.n/a, Article C09029</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by the American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5339-7b2f79b640d6b3ef8abebc8babdc43b2b750218e59b74461d63373e7738ac5a63</citedby><cites>FETCH-LOGICAL-a5339-7b2f79b640d6b3ef8abebc8babdc43b2b750218e59b74461d63373e7738ac5a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JC007005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JC007005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00783432$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, R. B.</creatorcontrib><creatorcontrib>Goff, J. A.</creatorcontrib><creatorcontrib>Naveira Garabato, A. C.</creatorcontrib><creatorcontrib>Nurser, A. J. G.</creatorcontrib><title>Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>The rate of generation of internal gravity waves in the lee of small length scale topography by geostrophic flow in the World Ocean was estimated using linear theory with corrections for finite amplitude topography. Several global data sets were combined for the calculation including an ocean circulation model for the near‐bottom geostrophic flow statistics, over 500 abyssal current meter records, historical climatological data for the buoyancy frequency, and two independent estimates of the small scale topographic statistical properties. The first topography estimate was based on an empirically‐derived relationship between paleo‐spreading rates and abyssal hill roughness, with corrections for sedimentation. The second estimate was based on small‐scale (&lt;100 km) roughness of satellite altimetry‐derived gravity field, using upward continuation relationships to derive estimates of abyssal hill roughness at the seafloor at scales less than approximately 20 km. The lee wave generation rate was found to be between 0.34 to 0.49 TW. The Southern Hemisphere produced 92% of the lee wave energy, with the Southern Ocean dominating. Strength of the bottom flow was the most important factor in producing the global pattern of generation rate, except in the Indian Ocean where extremely rough topography produced strong lee wave generation despite only moderate bottom flows. The results imply about one half of the mechanical power input to the ocean general circulation from the extra‐equatorial wind stress of the World Ocean results from abyssal lee wave generation. Topographic length scales between 176 m and 2.5 km (horizontal wavelengths between 1 and 16 km) accounted for 90% of the globally integrated generation. Key Points Lee wave generation accounts for about one half of mechanical energy dissipation Lee waves are generated by topography with wavelengths less than 5 km Lee waves are generated mostly in the Southern Ocean</description><subject>abyssal hills</subject><subject>Earth Sciences</subject><subject>Energy dissipation</subject><subject>Geophysics</subject><subject>Gravity waves</subject><subject>internal gravity waves</subject><subject>Internal waves</subject><subject>lee wave generation</subject><subject>Marine</subject><subject>mechanical energy budget</subject><subject>Ocean circulation</subject><subject>Ocean floor</subject><subject>Oceanography</subject><subject>Physical oceanography</subject><subject>Satellite altimetry</subject><subject>Sciences of the Universe</subject><subject>Topography</subject><subject>Water circulation</subject><subject>Wave energy</subject><subject>Wavelengths</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkV1rFDEUhoMouLS98wcErxScmu-Py7Lo1rIolqqXIclmuqnTyZjM7jr_3iwjpfRCcxPOyfOEw3kBeIXROUZEvycI46slQhIh_gwsCOaiIQSR52CBMFMNIkS-BGel3KF6GBcM4QUYVl1ytoPZjgHafgPLEPyYa8dvbbZ-DDmWMfoCUwtjX8u-vt1mu4_jBA92H-Bt6EPVY-qhm2qVypjTsI0etl06wLQPGY5pSFUattMpeNHaroSzv_cJ-Pbxw83ysll_WX1aXqwbyynVjXSkldrVITfC0dAq64Lzylm38Yw64iRHBKvAtZOMCbwRlEoapKTKem4FPQFv53-3tjNDjvc2TybZaC4v1ubYq5tSlFGyx5V9M7NDTr92oYzmPhYfus72Ie2KwRprLbDA7P8oQkoxKdQRff0EvUu74_qKUZpqjjlTFXo3Qz6nUnJoH2bFyBxzNY9zrTid8UPswvRP1lytrpeYIKGr1cxWjTL8frBs_mmEpJKbH59X5loodKO_fzWM_gG-hrJW</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Scott, R. B.</creator><creator>Goff, J. A.</creator><creator>Naveira Garabato, A. C.</creator><creator>Nurser, A. J. G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>201109</creationdate><title>Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography</title><author>Scott, R. B. ; Goff, J. A. ; Naveira Garabato, A. C. ; Nurser, A. J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5339-7b2f79b640d6b3ef8abebc8babdc43b2b750218e59b74461d63373e7738ac5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>abyssal hills</topic><topic>Earth Sciences</topic><topic>Energy dissipation</topic><topic>Geophysics</topic><topic>Gravity waves</topic><topic>internal gravity waves</topic><topic>Internal waves</topic><topic>lee wave generation</topic><topic>Marine</topic><topic>mechanical energy budget</topic><topic>Ocean circulation</topic><topic>Ocean floor</topic><topic>Oceanography</topic><topic>Physical oceanography</topic><topic>Satellite altimetry</topic><topic>Sciences of the Universe</topic><topic>Topography</topic><topic>Water circulation</topic><topic>Wave energy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, R. B.</creatorcontrib><creatorcontrib>Goff, J. A.</creatorcontrib><creatorcontrib>Naveira Garabato, A. C.</creatorcontrib><creatorcontrib>Nurser, A. J. G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, R. B.</au><au>Goff, J. A.</au><au>Naveira Garabato, A. C.</au><au>Nurser, A. J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-09</date><risdate>2011</risdate><volume>116</volume><issue>C9</issue><epage>n/a</epage><artnum>C09029</artnum><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>The rate of generation of internal gravity waves in the lee of small length scale topography by geostrophic flow in the World Ocean was estimated using linear theory with corrections for finite amplitude topography. Several global data sets were combined for the calculation including an ocean circulation model for the near‐bottom geostrophic flow statistics, over 500 abyssal current meter records, historical climatological data for the buoyancy frequency, and two independent estimates of the small scale topographic statistical properties. The first topography estimate was based on an empirically‐derived relationship between paleo‐spreading rates and abyssal hill roughness, with corrections for sedimentation. The second estimate was based on small‐scale (&lt;100 km) roughness of satellite altimetry‐derived gravity field, using upward continuation relationships to derive estimates of abyssal hill roughness at the seafloor at scales less than approximately 20 km. The lee wave generation rate was found to be between 0.34 to 0.49 TW. The Southern Hemisphere produced 92% of the lee wave energy, with the Southern Ocean dominating. Strength of the bottom flow was the most important factor in producing the global pattern of generation rate, except in the Indian Ocean where extremely rough topography produced strong lee wave generation despite only moderate bottom flows. The results imply about one half of the mechanical power input to the ocean general circulation from the extra‐equatorial wind stress of the World Ocean results from abyssal lee wave generation. Topographic length scales between 176 m and 2.5 km (horizontal wavelengths between 1 and 16 km) accounted for 90% of the globally integrated generation. Key Points Lee wave generation accounts for about one half of mechanical energy dissipation Lee waves are generated by topography with wavelengths less than 5 km Lee waves are generated mostly in the Southern Ocean</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JC007005</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2011-09, Vol.116 (C9), p.n/a, Article C09029
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_hal_primary_oai_HAL_hal_00783432v1
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects abyssal hills
Earth Sciences
Energy dissipation
Geophysics
Gravity waves
internal gravity waves
Internal waves
lee wave generation
Marine
mechanical energy budget
Ocean circulation
Ocean floor
Oceanography
Physical oceanography
Satellite altimetry
Sciences of the Universe
Topography
Water circulation
Wave energy
Wavelengths
title Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20rate%20and%20spectral%20characteristics%20of%20internal%20gravity%20wave%20generation%20by%20geostrophic%20flow%20over%20topography&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Scott,%20R.%20B.&rft.date=2011-09&rft.volume=116&rft.issue=C9&rft.epage=n/a&rft.artnum=C09029&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JC007005&rft_dat=%3Cproquest_hal_p%3E2467868071%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893951548&rft_id=info:pmid/&rfr_iscdi=true