On the difficulty to delimit disease risk hot spots

[Display omitted] ► Decision makers need clearly delimited risk zones to apply protection measures. ► In the underlying reality risk values are more likely to vary smoothly. ► Areas at risk do not correspond to the reality and are difficult to estimate. ► We apply risk partition models and clusterin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied earth observation and geoinformation 2013-06, Vol.22, p.99-105
Hauptverfasser: Charras-Garrido, M., Azizi, L., Forbes, F., Doyle, S., Peyrard, N., Abrial, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 99
container_title International journal of applied earth observation and geoinformation
container_volume 22
creator Charras-Garrido, M.
Azizi, L.
Forbes, F.
Doyle, S.
Peyrard, N.
Abrial, D.
description [Display omitted] ► Decision makers need clearly delimited risk zones to apply protection measures. ► In the underlying reality risk values are more likely to vary smoothly. ► Areas at risk do not correspond to the reality and are difficult to estimate. ► We apply risk partition models and clustering method for point data. ► The exact delimitation of the risk zones are quite different. Representing the health state of a region is a helpful tool to highlight spatial heterogeneity and localize high risk areas. For ease of interpretation and to determine where to apply control procedures, we need to clearly identify and delineate homogeneous regions in terms of disease risk, and in particular disease risk hot spots. However, even if practical purposes require the delineation of different risk classes, such a classification does not correspond to a reality and is thus difficult to estimate. Working with grouped data, a first natural choice is to apply disease mapping models. We apply a usual disease mapping model, producing continuous estimations of the risks that requires a post-processing classification step to obtain clearly delimited risk zones. We also apply a risk partition model that build a classification of the risk levels in a one step procedure. Working with point data, we will focus on the scan statistic clustering method. We illustrate our article with a real example concerning the bovin spongiform encephalopathy (BSE) an animal disease whose zones at risk are well known by the epidemiologists. We show that in this difficult case of a rare disease and a very heterogeneous population, the different methods provide risk zones that are globally coherent. But, related to the dichotomy between the need and the reality, the exact delimitation of the risk zones, as well as the corresponding estimated risks are quite different.
doi_str_mv 10.1016/j.jag.2012.04.005
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00780054v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303243412000682</els_id><sourcerecordid>S0303243412000682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-61f4f99b4e467a6eda5db158c973b6d3d5e4a8055e2d2f45d0e210fe0cc576a3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9iyMDAknB3bccRUVUCRKnXpwGa59pk6pE0Vh0r8e1wFdWS609P77vQeIfcUCgpUPjVFYz4LBpQVwAsAcUEmVFUsV0x-XKZdyDpXvGTX5CbGBoBWlVQTUq722bDFzAXvg_1uh59s6DKHbdiFIakRTcSsD_Er23ZDFg_dEG_JlTdtxLu_OSXr15f1fJEvV2_v89kyt6WkQy6p576uNxy5rIxEZ4TbUKFsXZUb6UonkBsFQiBzzHPhABkFj2CtqKQpp-RxPLs1rT70YWf6H92ZoBezpT5pAJVKSfmRJi8dvbbvYuzRnwEK-lSQbnQqSJ8K0sATKhLzMDIHE61pfW_2NsQzyCqqRK0g-Z5HH6asx4C9jjbg3qILPdpBuy788-UXhxh5qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the difficulty to delimit disease risk hot spots</title><source>Elsevier ScienceDirect Journals</source><creator>Charras-Garrido, M. ; Azizi, L. ; Forbes, F. ; Doyle, S. ; Peyrard, N. ; Abrial, D.</creator><creatorcontrib>Charras-Garrido, M. ; Azizi, L. ; Forbes, F. ; Doyle, S. ; Peyrard, N. ; Abrial, D.</creatorcontrib><description>[Display omitted] ► Decision makers need clearly delimited risk zones to apply protection measures. ► In the underlying reality risk values are more likely to vary smoothly. ► Areas at risk do not correspond to the reality and are difficult to estimate. ► We apply risk partition models and clustering method for point data. ► The exact delimitation of the risk zones are quite different. Representing the health state of a region is a helpful tool to highlight spatial heterogeneity and localize high risk areas. For ease of interpretation and to determine where to apply control procedures, we need to clearly identify and delineate homogeneous regions in terms of disease risk, and in particular disease risk hot spots. However, even if practical purposes require the delineation of different risk classes, such a classification does not correspond to a reality and is thus difficult to estimate. Working with grouped data, a first natural choice is to apply disease mapping models. We apply a usual disease mapping model, producing continuous estimations of the risks that requires a post-processing classification step to obtain clearly delimited risk zones. We also apply a risk partition model that build a classification of the risk levels in a one step procedure. Working with point data, we will focus on the scan statistic clustering method. We illustrate our article with a real example concerning the bovin spongiform encephalopathy (BSE) an animal disease whose zones at risk are well known by the epidemiologists. We show that in this difficult case of a rare disease and a very heterogeneous population, the different methods provide risk zones that are globally coherent. But, related to the dichotomy between the need and the reality, the exact delimitation of the risk zones, as well as the corresponding estimated risks are quite different.</description><identifier>ISSN: 1569-8432</identifier><identifier>EISSN: 1872-826X</identifier><identifier>DOI: 10.1016/j.jag.2012.04.005</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animal biology ; Applied geophysics ; Classification ; Computer Science ; Disease mapping ; Earth sciences ; Earth, ocean, space ; Epidemiology ; Exact sciences and technology ; Generalized Potts model ; Hidden Markov random field ; Internal geophysics ; Life Sciences ; Mathematics ; Spatial clustering</subject><ispartof>International journal of applied earth observation and geoinformation, 2013-06, Vol.22, p.99-105</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-61f4f99b4e467a6eda5db158c973b6d3d5e4a8055e2d2f45d0e210fe0cc576a3</citedby><cites>FETCH-LOGICAL-c361t-61f4f99b4e467a6eda5db158c973b6d3d5e4a8055e2d2f45d0e210fe0cc576a3</cites><orcidid>0000-0003-3639-0226 ; 0000-0001-7046-2567 ; 0000-0002-9956-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0303243412000682$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27185980$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00780054$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charras-Garrido, M.</creatorcontrib><creatorcontrib>Azizi, L.</creatorcontrib><creatorcontrib>Forbes, F.</creatorcontrib><creatorcontrib>Doyle, S.</creatorcontrib><creatorcontrib>Peyrard, N.</creatorcontrib><creatorcontrib>Abrial, D.</creatorcontrib><title>On the difficulty to delimit disease risk hot spots</title><title>International journal of applied earth observation and geoinformation</title><description>[Display omitted] ► Decision makers need clearly delimited risk zones to apply protection measures. ► In the underlying reality risk values are more likely to vary smoothly. ► Areas at risk do not correspond to the reality and are difficult to estimate. ► We apply risk partition models and clustering method for point data. ► The exact delimitation of the risk zones are quite different. Representing the health state of a region is a helpful tool to highlight spatial heterogeneity and localize high risk areas. For ease of interpretation and to determine where to apply control procedures, we need to clearly identify and delineate homogeneous regions in terms of disease risk, and in particular disease risk hot spots. However, even if practical purposes require the delineation of different risk classes, such a classification does not correspond to a reality and is thus difficult to estimate. Working with grouped data, a first natural choice is to apply disease mapping models. We apply a usual disease mapping model, producing continuous estimations of the risks that requires a post-processing classification step to obtain clearly delimited risk zones. We also apply a risk partition model that build a classification of the risk levels in a one step procedure. Working with point data, we will focus on the scan statistic clustering method. We illustrate our article with a real example concerning the bovin spongiform encephalopathy (BSE) an animal disease whose zones at risk are well known by the epidemiologists. We show that in this difficult case of a rare disease and a very heterogeneous population, the different methods provide risk zones that are globally coherent. But, related to the dichotomy between the need and the reality, the exact delimitation of the risk zones, as well as the corresponding estimated risks are quite different.</description><subject>Animal biology</subject><subject>Applied geophysics</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Disease mapping</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Epidemiology</subject><subject>Exact sciences and technology</subject><subject>Generalized Potts model</subject><subject>Hidden Markov random field</subject><subject>Internal geophysics</subject><subject>Life Sciences</subject><subject>Mathematics</subject><subject>Spatial clustering</subject><issn>1569-8432</issn><issn>1872-826X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9iyMDAknB3bccRUVUCRKnXpwGa59pk6pE0Vh0r8e1wFdWS609P77vQeIfcUCgpUPjVFYz4LBpQVwAsAcUEmVFUsV0x-XKZdyDpXvGTX5CbGBoBWlVQTUq722bDFzAXvg_1uh59s6DKHbdiFIakRTcSsD_Er23ZDFg_dEG_JlTdtxLu_OSXr15f1fJEvV2_v89kyt6WkQy6p576uNxy5rIxEZ4TbUKFsXZUb6UonkBsFQiBzzHPhABkFj2CtqKQpp-RxPLs1rT70YWf6H92ZoBezpT5pAJVKSfmRJi8dvbbvYuzRnwEK-lSQbnQqSJ8K0sATKhLzMDIHE61pfW_2NsQzyCqqRK0g-Z5HH6asx4C9jjbg3qILPdpBuy788-UXhxh5qw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Charras-Garrido, M.</creator><creator>Azizi, L.</creator><creator>Forbes, F.</creator><creator>Doyle, S.</creator><creator>Peyrard, N.</creator><creator>Abrial, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3639-0226</orcidid><orcidid>https://orcid.org/0000-0001-7046-2567</orcidid><orcidid>https://orcid.org/0000-0002-9956-9605</orcidid></search><sort><creationdate>20130601</creationdate><title>On the difficulty to delimit disease risk hot spots</title><author>Charras-Garrido, M. ; Azizi, L. ; Forbes, F. ; Doyle, S. ; Peyrard, N. ; Abrial, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-61f4f99b4e467a6eda5db158c973b6d3d5e4a8055e2d2f45d0e210fe0cc576a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal biology</topic><topic>Applied geophysics</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Disease mapping</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Epidemiology</topic><topic>Exact sciences and technology</topic><topic>Generalized Potts model</topic><topic>Hidden Markov random field</topic><topic>Internal geophysics</topic><topic>Life Sciences</topic><topic>Mathematics</topic><topic>Spatial clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charras-Garrido, M.</creatorcontrib><creatorcontrib>Azizi, L.</creatorcontrib><creatorcontrib>Forbes, F.</creatorcontrib><creatorcontrib>Doyle, S.</creatorcontrib><creatorcontrib>Peyrard, N.</creatorcontrib><creatorcontrib>Abrial, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of applied earth observation and geoinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charras-Garrido, M.</au><au>Azizi, L.</au><au>Forbes, F.</au><au>Doyle, S.</au><au>Peyrard, N.</au><au>Abrial, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the difficulty to delimit disease risk hot spots</atitle><jtitle>International journal of applied earth observation and geoinformation</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>22</volume><spage>99</spage><epage>105</epage><pages>99-105</pages><issn>1569-8432</issn><eissn>1872-826X</eissn><abstract>[Display omitted] ► Decision makers need clearly delimited risk zones to apply protection measures. ► In the underlying reality risk values are more likely to vary smoothly. ► Areas at risk do not correspond to the reality and are difficult to estimate. ► We apply risk partition models and clustering method for point data. ► The exact delimitation of the risk zones are quite different. Representing the health state of a region is a helpful tool to highlight spatial heterogeneity and localize high risk areas. For ease of interpretation and to determine where to apply control procedures, we need to clearly identify and delineate homogeneous regions in terms of disease risk, and in particular disease risk hot spots. However, even if practical purposes require the delineation of different risk classes, such a classification does not correspond to a reality and is thus difficult to estimate. Working with grouped data, a first natural choice is to apply disease mapping models. We apply a usual disease mapping model, producing continuous estimations of the risks that requires a post-processing classification step to obtain clearly delimited risk zones. We also apply a risk partition model that build a classification of the risk levels in a one step procedure. Working with point data, we will focus on the scan statistic clustering method. We illustrate our article with a real example concerning the bovin spongiform encephalopathy (BSE) an animal disease whose zones at risk are well known by the epidemiologists. We show that in this difficult case of a rare disease and a very heterogeneous population, the different methods provide risk zones that are globally coherent. But, related to the dichotomy between the need and the reality, the exact delimitation of the risk zones, as well as the corresponding estimated risks are quite different.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jag.2012.04.005</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3639-0226</orcidid><orcidid>https://orcid.org/0000-0001-7046-2567</orcidid><orcidid>https://orcid.org/0000-0002-9956-9605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1569-8432
ispartof International journal of applied earth observation and geoinformation, 2013-06, Vol.22, p.99-105
issn 1569-8432
1872-826X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00780054v1
source Elsevier ScienceDirect Journals
subjects Animal biology
Applied geophysics
Classification
Computer Science
Disease mapping
Earth sciences
Earth, ocean, space
Epidemiology
Exact sciences and technology
Generalized Potts model
Hidden Markov random field
Internal geophysics
Life Sciences
Mathematics
Spatial clustering
title On the difficulty to delimit disease risk hot spots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20difficulty%20to%20delimit%20disease%20risk%20hot%20spots&rft.jtitle=International%20journal%20of%20applied%20earth%20observation%20and%20geoinformation&rft.au=Charras-Garrido,%20M.&rft.date=2013-06-01&rft.volume=22&rft.spage=99&rft.epage=105&rft.pages=99-105&rft.issn=1569-8432&rft.eissn=1872-826X&rft_id=info:doi/10.1016/j.jag.2012.04.005&rft_dat=%3Celsevier_hal_p%3ES0303243412000682%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0303243412000682&rfr_iscdi=true