A Multiscale Approach for Modeling Bubbles Rising in Non-Newtonian Fluids

The present work reports a multiscale approach to describe the dynamics of a chain of bubbles rising in non-Newtonian fluids. By means of the particle image velocimetry (PIV) and the lattice Boltzmann (LB) simulation, a deep understanding of the complex flow pattern around a single bubble is gained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2012-02, Vol.51 (4), p.2084-2093
Hauptverfasser: Frank, Xavier, Charpentier, Jean-Claude, Ma, Youguang, Midoux, Noël, Li, Huai Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2093
container_issue 4
container_start_page 2084
container_title Industrial & engineering chemistry research
container_volume 51
creator Frank, Xavier
Charpentier, Jean-Claude
Ma, Youguang
Midoux, Noël
Li, Huai Z
description The present work reports a multiscale approach to describe the dynamics of a chain of bubbles rising in non-Newtonian fluids. By means of the particle image velocimetry (PIV) and the lattice Boltzmann (LB) simulation, a deep understanding of the complex flow pattern around a single bubble is gained at microscale. The interactions and coalescences between bubbles rising in non-Newtonian fluids are experimentally investigated by the PIV measurements, birefringence, and rheological characterization for both an isolated bubble and a chain of bubbles formed from a submerged orifice. Two aspects are identified as central to interactions and coalescence: the stress creation by the passage of bubbles and their relaxation due to the fluid’s memory. This competition between the creation and relaxation of stresses displays nonlinear complex dynamics. Along with the detailed knowledge around a single bubble, these fundamental mechanisms governing the bubbles’ collective behavior in a train of bubbles at mesoscale leads to cognitive modeling on the basis of behavioral rules. By simulating bubbles as adaptive agents with the surrounding fluid via averaged residual stresses, model predictions for consecutive coalescence between a great number of bubbles compare very satisfactorily with the experimental investigation at macroscale.
doi_str_mv 10.1021/ie2006577
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00778220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1692303487</sourcerecordid><originalsourceid>FETCH-LOGICAL-a393t-6a918450c74ff669bd68ec645570b92ec68047e4c0aae4860d16fefc9668075f3</originalsourceid><addsrcrecordid>eNptkM1LwzAYxoMoOKcH_4NeBD1U37T56rEO5wbbBNFzyLLEZWTNbFrF_96WyXbx9H497w-eB6FrDPcYMvzgTAbAKOcnaIBpBikFQk_RAIQQKRWCnqOLGDcAQCkhAzQtk3nrGxe18iYpd7s6KL1ObKiTeVgZ76qP5LFdLr2JyauL_eiqZBGqdGG-m1A5VSVj37pVvERnVvlorv7qEL2Pn95Gk3T28jwdlbNU5UXepEwVWBAKmhNrGSuWKyaMZoRSDssi61oBhBuiQSlDBIMVZtZYXbDuwKnNh-huz10rL3e126r6Rwbl5KScyX4HwLnIMvjCnfZ2r-1sfbYmNnLbOTXeq8qENkrMiiyHnAh-xOo6xFgbe2BjkH208hBtp735w6o-N1urSrt4eMgoywtM4KhTOspNaOuqC-Yf3i8e9YFh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692303487</pqid></control><display><type>article</type><title>A Multiscale Approach for Modeling Bubbles Rising in Non-Newtonian Fluids</title><source>ACS Publications</source><creator>Frank, Xavier ; Charpentier, Jean-Claude ; Ma, Youguang ; Midoux, Noël ; Li, Huai Z</creator><creatorcontrib>Frank, Xavier ; Charpentier, Jean-Claude ; Ma, Youguang ; Midoux, Noël ; Li, Huai Z</creatorcontrib><description>The present work reports a multiscale approach to describe the dynamics of a chain of bubbles rising in non-Newtonian fluids. By means of the particle image velocimetry (PIV) and the lattice Boltzmann (LB) simulation, a deep understanding of the complex flow pattern around a single bubble is gained at microscale. The interactions and coalescences between bubbles rising in non-Newtonian fluids are experimentally investigated by the PIV measurements, birefringence, and rheological characterization for both an isolated bubble and a chain of bubbles formed from a submerged orifice. Two aspects are identified as central to interactions and coalescence: the stress creation by the passage of bubbles and their relaxation due to the fluid’s memory. This competition between the creation and relaxation of stresses displays nonlinear complex dynamics. Along with the detailed knowledge around a single bubble, these fundamental mechanisms governing the bubbles’ collective behavior in a train of bubbles at mesoscale leads to cognitive modeling on the basis of behavioral rules. By simulating bubbles as adaptive agents with the surrounding fluid via averaged residual stresses, model predictions for consecutive coalescence between a great number of bubbles compare very satisfactorily with the experimental investigation at macroscale.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie2006577</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Bubbles ; Chains ; Chemical and Process Engineering ; Chemical engineering ; Coalescing ; Computer simulation ; Engineering Sciences ; Exact sciences and technology ; General Research ; Mathematical models ; Non Newtonian fluids ; Stresses ; Trains</subject><ispartof>Industrial &amp; engineering chemistry research, 2012-02, Vol.51 (4), p.2084-2093</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a393t-6a918450c74ff669bd68ec645570b92ec68047e4c0aae4860d16fefc9668075f3</citedby><cites>FETCH-LOGICAL-a393t-6a918450c74ff669bd68ec645570b92ec68047e4c0aae4860d16fefc9668075f3</cites><orcidid>0000-0001-7129-6660 ; 0000-0003-3528-7892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie2006577$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie2006577$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25639140$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00778220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Xavier</creatorcontrib><creatorcontrib>Charpentier, Jean-Claude</creatorcontrib><creatorcontrib>Ma, Youguang</creatorcontrib><creatorcontrib>Midoux, Noël</creatorcontrib><creatorcontrib>Li, Huai Z</creatorcontrib><title>A Multiscale Approach for Modeling Bubbles Rising in Non-Newtonian Fluids</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The present work reports a multiscale approach to describe the dynamics of a chain of bubbles rising in non-Newtonian fluids. By means of the particle image velocimetry (PIV) and the lattice Boltzmann (LB) simulation, a deep understanding of the complex flow pattern around a single bubble is gained at microscale. The interactions and coalescences between bubbles rising in non-Newtonian fluids are experimentally investigated by the PIV measurements, birefringence, and rheological characterization for both an isolated bubble and a chain of bubbles formed from a submerged orifice. Two aspects are identified as central to interactions and coalescence: the stress creation by the passage of bubbles and their relaxation due to the fluid’s memory. This competition between the creation and relaxation of stresses displays nonlinear complex dynamics. Along with the detailed knowledge around a single bubble, these fundamental mechanisms governing the bubbles’ collective behavior in a train of bubbles at mesoscale leads to cognitive modeling on the basis of behavioral rules. By simulating bubbles as adaptive agents with the surrounding fluid via averaged residual stresses, model predictions for consecutive coalescence between a great number of bubbles compare very satisfactorily with the experimental investigation at macroscale.</description><subject>Applied sciences</subject><subject>Bubbles</subject><subject>Chains</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Coalescing</subject><subject>Computer simulation</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>General Research</subject><subject>Mathematical models</subject><subject>Non Newtonian fluids</subject><subject>Stresses</subject><subject>Trains</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkM1LwzAYxoMoOKcH_4NeBD1U37T56rEO5wbbBNFzyLLEZWTNbFrF_96WyXbx9H497w-eB6FrDPcYMvzgTAbAKOcnaIBpBikFQk_RAIQQKRWCnqOLGDcAQCkhAzQtk3nrGxe18iYpd7s6KL1ObKiTeVgZ76qP5LFdLr2JyauL_eiqZBGqdGG-m1A5VSVj37pVvERnVvlorv7qEL2Pn95Gk3T28jwdlbNU5UXepEwVWBAKmhNrGSuWKyaMZoRSDssi61oBhBuiQSlDBIMVZtZYXbDuwKnNh-huz10rL3e126r6Rwbl5KScyX4HwLnIMvjCnfZ2r-1sfbYmNnLbOTXeq8qENkrMiiyHnAh-xOo6xFgbe2BjkH208hBtp735w6o-N1urSrt4eMgoywtM4KhTOspNaOuqC-Yf3i8e9YFh</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Frank, Xavier</creator><creator>Charpentier, Jean-Claude</creator><creator>Ma, Youguang</creator><creator>Midoux, Noël</creator><creator>Li, Huai Z</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7129-6660</orcidid><orcidid>https://orcid.org/0000-0003-3528-7892</orcidid></search><sort><creationdate>20120201</creationdate><title>A Multiscale Approach for Modeling Bubbles Rising in Non-Newtonian Fluids</title><author>Frank, Xavier ; Charpentier, Jean-Claude ; Ma, Youguang ; Midoux, Noël ; Li, Huai Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a393t-6a918450c74ff669bd68ec645570b92ec68047e4c0aae4860d16fefc9668075f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bubbles</topic><topic>Chains</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Coalescing</topic><topic>Computer simulation</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>General Research</topic><topic>Mathematical models</topic><topic>Non Newtonian fluids</topic><topic>Stresses</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Xavier</creatorcontrib><creatorcontrib>Charpentier, Jean-Claude</creatorcontrib><creatorcontrib>Ma, Youguang</creatorcontrib><creatorcontrib>Midoux, Noël</creatorcontrib><creatorcontrib>Li, Huai Z</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Xavier</au><au>Charpentier, Jean-Claude</au><au>Ma, Youguang</au><au>Midoux, Noël</au><au>Li, Huai Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Approach for Modeling Bubbles Rising in Non-Newtonian Fluids</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>51</volume><issue>4</issue><spage>2084</spage><epage>2093</epage><pages>2084-2093</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The present work reports a multiscale approach to describe the dynamics of a chain of bubbles rising in non-Newtonian fluids. By means of the particle image velocimetry (PIV) and the lattice Boltzmann (LB) simulation, a deep understanding of the complex flow pattern around a single bubble is gained at microscale. The interactions and coalescences between bubbles rising in non-Newtonian fluids are experimentally investigated by the PIV measurements, birefringence, and rheological characterization for both an isolated bubble and a chain of bubbles formed from a submerged orifice. Two aspects are identified as central to interactions and coalescence: the stress creation by the passage of bubbles and their relaxation due to the fluid’s memory. This competition between the creation and relaxation of stresses displays nonlinear complex dynamics. Along with the detailed knowledge around a single bubble, these fundamental mechanisms governing the bubbles’ collective behavior in a train of bubbles at mesoscale leads to cognitive modeling on the basis of behavioral rules. By simulating bubbles as adaptive agents with the surrounding fluid via averaged residual stresses, model predictions for consecutive coalescence between a great number of bubbles compare very satisfactorily with the experimental investigation at macroscale.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie2006577</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7129-6660</orcidid><orcidid>https://orcid.org/0000-0003-3528-7892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2012-02, Vol.51 (4), p.2084-2093
issn 0888-5885
1520-5045
language eng
recordid cdi_hal_primary_oai_HAL_hal_00778220v1
source ACS Publications
subjects Applied sciences
Bubbles
Chains
Chemical and Process Engineering
Chemical engineering
Coalescing
Computer simulation
Engineering Sciences
Exact sciences and technology
General Research
Mathematical models
Non Newtonian fluids
Stresses
Trains
title A Multiscale Approach for Modeling Bubbles Rising in Non-Newtonian Fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Approach%20for%20Modeling%20Bubbles%20Rising%20in%20Non-Newtonian%20Fluids&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Frank,%20Xavier&rft.date=2012-02-01&rft.volume=51&rft.issue=4&rft.spage=2084&rft.epage=2093&rft.pages=2084-2093&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie2006577&rft_dat=%3Cproquest_hal_p%3E1692303487%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692303487&rft_id=info:pmid/&rfr_iscdi=true