A step-indexed Kripke model of hidden state
Frame and anti-frame rules have been proposed as proof rules for modular reasoning about programs. Frame rules allow the hiding of irrelevant parts of the state during verification, whereas the anti-frame rule allows the hiding of local state from the context. We discuss the semantic foundations of...
Gespeichert in:
Veröffentlicht in: | Mathematical structures in computer science 2013-02, Vol.23 (1), p.1-54 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Mathematical structures in computer science |
container_volume | 23 |
creator | SCHWINGHAMMER, JAN BIRKEDAL, LARS POTTIER, FRANÇOIS REUS, BERNHARD STØVRING, KRISTIAN YANG, HONGSEOK |
description | Frame and anti-frame rules have been proposed as proof rules for modular reasoning about programs. Frame rules allow the hiding of irrelevant parts of the state during verification, whereas the anti-frame rule allows the hiding of local state from the context. We discuss the semantic foundations of frame and anti-frame rules, and present the first sound model for Charguéraud and Pottier's type and capability system including both of these rules. The model is a possible worlds model based on the operational semantics and step-indexed heap relations, and the worlds are given by a recursively defined metric space. We also extend the model to account for Pottier's generalised frame and anti-frame rules, where invariants are generalised to families of invariants indexed over preorders. This generalisation enables reasoning about some well-bracketed as well as (locally) monotone uses of local state. |
doi_str_mv | 10.1017/S0960129512000035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00772757v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0960129512000035</cupid><sourcerecordid>1671475642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-54ac2eec6a72449162a754efe64d74220ff356eb6e724a38f218ee78c38ce03</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKd_gG8FXxSp5uazfRxjOnHgw3wPWXvrOvtl0on-96ZsiCgGQuCe3zncHELOgd4ABX27pKmiwFIJjIbD5QEZgVBpnFDNDslokONBPyYn3m8oBQ40HZHrSeR77OKyyfED8-jRld0rRnWbYxW1RbQu8xybwNgeT8lRYSuPZ_t3TJZ3s-fpPF483T9MJ4s4E0z3sRQ2Y4iZspoJkYJiVkuBBSqRa8EYLQouFa4UBt3ypGCQIOok40mGlI_J1S51bSvTubK27tO0tjTzycIMM0q1Zlrqdwjs5Y7tXPu2Rd-buvQZVpVtsN16A0qD0FIJFtCLX-im3bom_MMA40m4OhkCYUdlrvXeYfG9AVAzFG3-FB08fO-x9cqV-Qv-iP7X9QWp73tl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238123781</pqid></control><display><type>article</type><title>A step-indexed Kripke model of hidden state</title><source>Cambridge University Press Journals Complete</source><creator>SCHWINGHAMMER, JAN ; BIRKEDAL, LARS ; POTTIER, FRANÇOIS ; REUS, BERNHARD ; STØVRING, KRISTIAN ; YANG, HONGSEOK</creator><creatorcontrib>SCHWINGHAMMER, JAN ; BIRKEDAL, LARS ; POTTIER, FRANÇOIS ; REUS, BERNHARD ; STØVRING, KRISTIAN ; YANG, HONGSEOK</creatorcontrib><description>Frame and anti-frame rules have been proposed as proof rules for modular reasoning about programs. Frame rules allow the hiding of irrelevant parts of the state during verification, whereas the anti-frame rule allows the hiding of local state from the context. We discuss the semantic foundations of frame and anti-frame rules, and present the first sound model for Charguéraud and Pottier's type and capability system including both of these rules. The model is a possible worlds model based on the operational semantics and step-indexed heap relations, and the worlds are given by a recursively defined metric space. We also extend the model to account for Pottier's generalised frame and anti-frame rules, where invariants are generalised to families of invariants indexed over preorders. This generalisation enables reasoning about some well-bracketed as well as (locally) monotone uses of local state.</description><identifier>ISSN: 0960-1295</identifier><identifier>EISSN: 1469-8072</identifier><identifier>DOI: 10.1017/S0960129512000035</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computer Science ; Foundations ; Frames ; Invariants ; Mathematical models ; Metric space ; Modular ; Programming Languages ; Reasoning ; Semantics</subject><ispartof>Mathematical structures in computer science, 2013-02, Vol.23 (1), p.1-54</ispartof><rights>Copyright © Cambridge University Press 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-54ac2eec6a72449162a754efe64d74220ff356eb6e724a38f218ee78c38ce03</citedby><cites>FETCH-LOGICAL-c427t-54ac2eec6a72449162a754efe64d74220ff356eb6e724a38f218ee78c38ce03</cites><orcidid>0000-0003-1320-0098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0960129512000035/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00772757$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHWINGHAMMER, JAN</creatorcontrib><creatorcontrib>BIRKEDAL, LARS</creatorcontrib><creatorcontrib>POTTIER, FRANÇOIS</creatorcontrib><creatorcontrib>REUS, BERNHARD</creatorcontrib><creatorcontrib>STØVRING, KRISTIAN</creatorcontrib><creatorcontrib>YANG, HONGSEOK</creatorcontrib><title>A step-indexed Kripke model of hidden state</title><title>Mathematical structures in computer science</title><addtitle>Math. Struct. Comp. Sci</addtitle><description>Frame and anti-frame rules have been proposed as proof rules for modular reasoning about programs. Frame rules allow the hiding of irrelevant parts of the state during verification, whereas the anti-frame rule allows the hiding of local state from the context. We discuss the semantic foundations of frame and anti-frame rules, and present the first sound model for Charguéraud and Pottier's type and capability system including both of these rules. The model is a possible worlds model based on the operational semantics and step-indexed heap relations, and the worlds are given by a recursively defined metric space. We also extend the model to account for Pottier's generalised frame and anti-frame rules, where invariants are generalised to families of invariants indexed over preorders. This generalisation enables reasoning about some well-bracketed as well as (locally) monotone uses of local state.</description><subject>Computer Science</subject><subject>Foundations</subject><subject>Frames</subject><subject>Invariants</subject><subject>Mathematical models</subject><subject>Metric space</subject><subject>Modular</subject><subject>Programming Languages</subject><subject>Reasoning</subject><subject>Semantics</subject><issn>0960-1295</issn><issn>1469-8072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kN1LwzAUxYMoOKd_gG8FXxSp5uazfRxjOnHgw3wPWXvrOvtl0on-96ZsiCgGQuCe3zncHELOgd4ABX27pKmiwFIJjIbD5QEZgVBpnFDNDslokONBPyYn3m8oBQ40HZHrSeR77OKyyfED8-jRld0rRnWbYxW1RbQu8xybwNgeT8lRYSuPZ_t3TJZ3s-fpPF483T9MJ4s4E0z3sRQ2Y4iZspoJkYJiVkuBBSqRa8EYLQouFa4UBt3ypGCQIOok40mGlI_J1S51bSvTubK27tO0tjTzycIMM0q1Zlrqdwjs5Y7tXPu2Rd-buvQZVpVtsN16A0qD0FIJFtCLX-im3bom_MMA40m4OhkCYUdlrvXeYfG9AVAzFG3-FB08fO-x9cqV-Qv-iP7X9QWp73tl</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>SCHWINGHAMMER, JAN</creator><creator>BIRKEDAL, LARS</creator><creator>POTTIER, FRANÇOIS</creator><creator>REUS, BERNHARD</creator><creator>STØVRING, KRISTIAN</creator><creator>YANG, HONGSEOK</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1320-0098</orcidid></search><sort><creationdate>20130201</creationdate><title>A step-indexed Kripke model of hidden state</title><author>SCHWINGHAMMER, JAN ; BIRKEDAL, LARS ; POTTIER, FRANÇOIS ; REUS, BERNHARD ; STØVRING, KRISTIAN ; YANG, HONGSEOK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-54ac2eec6a72449162a754efe64d74220ff356eb6e724a38f218ee78c38ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer Science</topic><topic>Foundations</topic><topic>Frames</topic><topic>Invariants</topic><topic>Mathematical models</topic><topic>Metric space</topic><topic>Modular</topic><topic>Programming Languages</topic><topic>Reasoning</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHWINGHAMMER, JAN</creatorcontrib><creatorcontrib>BIRKEDAL, LARS</creatorcontrib><creatorcontrib>POTTIER, FRANÇOIS</creatorcontrib><creatorcontrib>REUS, BERNHARD</creatorcontrib><creatorcontrib>STØVRING, KRISTIAN</creatorcontrib><creatorcontrib>YANG, HONGSEOK</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical structures in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHWINGHAMMER, JAN</au><au>BIRKEDAL, LARS</au><au>POTTIER, FRANÇOIS</au><au>REUS, BERNHARD</au><au>STØVRING, KRISTIAN</au><au>YANG, HONGSEOK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A step-indexed Kripke model of hidden state</atitle><jtitle>Mathematical structures in computer science</jtitle><addtitle>Math. Struct. Comp. Sci</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>54</epage><pages>1-54</pages><issn>0960-1295</issn><eissn>1469-8072</eissn><abstract>Frame and anti-frame rules have been proposed as proof rules for modular reasoning about programs. Frame rules allow the hiding of irrelevant parts of the state during verification, whereas the anti-frame rule allows the hiding of local state from the context. We discuss the semantic foundations of frame and anti-frame rules, and present the first sound model for Charguéraud and Pottier's type and capability system including both of these rules. The model is a possible worlds model based on the operational semantics and step-indexed heap relations, and the worlds are given by a recursively defined metric space. We also extend the model to account for Pottier's generalised frame and anti-frame rules, where invariants are generalised to families of invariants indexed over preorders. This generalisation enables reasoning about some well-bracketed as well as (locally) monotone uses of local state.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0960129512000035</doi><tpages>54</tpages><orcidid>https://orcid.org/0000-0003-1320-0098</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1295 |
ispartof | Mathematical structures in computer science, 2013-02, Vol.23 (1), p.1-54 |
issn | 0960-1295 1469-8072 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00772757v1 |
source | Cambridge University Press Journals Complete |
subjects | Computer Science Foundations Frames Invariants Mathematical models Metric space Modular Programming Languages Reasoning Semantics |
title | A step-indexed Kripke model of hidden state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20step-indexed%20Kripke%20model%20of%20hidden%20state&rft.jtitle=Mathematical%20structures%20in%20computer%20science&rft.au=SCHWINGHAMMER,%20JAN&rft.date=2013-02-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=54&rft.pages=1-54&rft.issn=0960-1295&rft.eissn=1469-8072&rft_id=info:doi/10.1017/S0960129512000035&rft_dat=%3Cproquest_hal_p%3E1671475642%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238123781&rft_id=info:pmid/&rft_cupid=10_1017_S0960129512000035&rfr_iscdi=true |