Characterization of Carboxylated Nanolatexes by Capillary Electrophoresis

Poly(styrene-co-acrylic acid) (St/AA) and poly(styrene-co-methacrylic acid) (St/MA) nanolatexes with different acid contents were prepared by emulsion copolymerization and were analyzed by capillary electrophoresis (CE) and by laser doppler velocimetry (LDV). Due to the intrinsic differences in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2011, Vol.27, p.4040-4047
Hauptverfasser: Oukacine, Farid, Morel, Aurélie, Cottet, Hervé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4047
container_issue
container_start_page 4040
container_title Langmuir
container_volume 27
creator Oukacine, Farid
Morel, Aurélie
Cottet, Hervé
description Poly(styrene-co-acrylic acid) (St/AA) and poly(styrene-co-methacrylic acid) (St/MA) nanolatexes with different acid contents were prepared by emulsion copolymerization and were analyzed by capillary electrophoresis (CE) and by laser doppler velocimetry (LDV). Due to the intrinsic differences in the methodologies, CE (separative technique) and LDV (zetametry, nonseparative technique) lead to very different electrophoretic mobility distributions. Beyond these differences, the variation of the electrophoretic mobility is a complex and nonlinear function of the hydrodynamic radius, the ionic strength, and the zeta potential. To gain better insight on the influence of the ionic strength and the acid content on the electrophoretic behavior of the nanolatexes, the electrophoretic mobility data were changed into surface charge densities using the O'Brien, White, and Ohshima modeling. This approach leads to the conclusion that the surface charge density is mainly controlled at high ionic strength (∼50 mM) by the adsorption of anionic surfactants coming from the sample. On the contrary, at low ionic strength, and/or in the presence of neutral surfactant in the electrolyte, the acid content was the main parameter controlling the surface charge density of the nanolatexes.
doi_str_mv 10.1021/1a1048562
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00772451v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00772451v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00772451v13</originalsourceid><addsrcrecordid>eNqVi8sKwjAURIMoWB8L_yBbF9WbNDXtUoqiIK7cl9saaSQ2JSnS-vUq-AOuZjhzhpAFgxUDztYMGYgk3vABCVjMIYwTLockACmiUIpNNCYT7-8AkEYiDcgxq9Bh2SqnX9hqW1N7oxm6wna9wVZd6Rlr-22d8rToP1ujjUHX051RZetsU1mnvPYzMrqh8Wr-yylZ7neX7BBWaPLG6cfnk1vU-WF7yr8MQEouYvZk0T_uGyvMRf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of Carboxylated Nanolatexes by Capillary Electrophoresis</title><source>American Chemical Society Journals</source><creator>Oukacine, Farid ; Morel, Aurélie ; Cottet, Hervé</creator><creatorcontrib>Oukacine, Farid ; Morel, Aurélie ; Cottet, Hervé</creatorcontrib><description>Poly(styrene-co-acrylic acid) (St/AA) and poly(styrene-co-methacrylic acid) (St/MA) nanolatexes with different acid contents were prepared by emulsion copolymerization and were analyzed by capillary electrophoresis (CE) and by laser doppler velocimetry (LDV). Due to the intrinsic differences in the methodologies, CE (separative technique) and LDV (zetametry, nonseparative technique) lead to very different electrophoretic mobility distributions. Beyond these differences, the variation of the electrophoretic mobility is a complex and nonlinear function of the hydrodynamic radius, the ionic strength, and the zeta potential. To gain better insight on the influence of the ionic strength and the acid content on the electrophoretic behavior of the nanolatexes, the electrophoretic mobility data were changed into surface charge densities using the O'Brien, White, and Ohshima modeling. This approach leads to the conclusion that the surface charge density is mainly controlled at high ionic strength (∼50 mM) by the adsorption of anionic surfactants coming from the sample. On the contrary, at low ionic strength, and/or in the presence of neutral surfactant in the electrolyte, the acid content was the main parameter controlling the surface charge density of the nanolatexes.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/1a1048562</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Organic chemistry</subject><ispartof>Langmuir, 2011, Vol.27, p.4040-4047</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6876-175X ; 0000-0001-9983-5005 ; 0000-0002-6876-175X ; 0000-0001-9983-5005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00772451$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oukacine, Farid</creatorcontrib><creatorcontrib>Morel, Aurélie</creatorcontrib><creatorcontrib>Cottet, Hervé</creatorcontrib><title>Characterization of Carboxylated Nanolatexes by Capillary Electrophoresis</title><title>Langmuir</title><description>Poly(styrene-co-acrylic acid) (St/AA) and poly(styrene-co-methacrylic acid) (St/MA) nanolatexes with different acid contents were prepared by emulsion copolymerization and were analyzed by capillary electrophoresis (CE) and by laser doppler velocimetry (LDV). Due to the intrinsic differences in the methodologies, CE (separative technique) and LDV (zetametry, nonseparative technique) lead to very different electrophoretic mobility distributions. Beyond these differences, the variation of the electrophoretic mobility is a complex and nonlinear function of the hydrodynamic radius, the ionic strength, and the zeta potential. To gain better insight on the influence of the ionic strength and the acid content on the electrophoretic behavior of the nanolatexes, the electrophoretic mobility data were changed into surface charge densities using the O'Brien, White, and Ohshima modeling. This approach leads to the conclusion that the surface charge density is mainly controlled at high ionic strength (∼50 mM) by the adsorption of anionic surfactants coming from the sample. On the contrary, at low ionic strength, and/or in the presence of neutral surfactant in the electrolyte, the acid content was the main parameter controlling the surface charge density of the nanolatexes.</description><subject>Chemical Sciences</subject><subject>Organic chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVi8sKwjAURIMoWB8L_yBbF9WbNDXtUoqiIK7cl9saaSQ2JSnS-vUq-AOuZjhzhpAFgxUDztYMGYgk3vABCVjMIYwTLockACmiUIpNNCYT7-8AkEYiDcgxq9Bh2SqnX9hqW1N7oxm6wna9wVZd6Rlr-22d8rToP1ujjUHX051RZetsU1mnvPYzMrqh8Wr-yylZ7neX7BBWaPLG6cfnk1vU-WF7yr8MQEouYvZk0T_uGyvMRf8</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Oukacine, Farid</creator><creator>Morel, Aurélie</creator><creator>Cottet, Hervé</creator><general>American Chemical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6876-175X</orcidid><orcidid>https://orcid.org/0000-0001-9983-5005</orcidid><orcidid>https://orcid.org/0000-0002-6876-175X</orcidid><orcidid>https://orcid.org/0000-0001-9983-5005</orcidid></search><sort><creationdate>2011</creationdate><title>Characterization of Carboxylated Nanolatexes by Capillary Electrophoresis</title><author>Oukacine, Farid ; Morel, Aurélie ; Cottet, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00772451v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemical Sciences</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oukacine, Farid</creatorcontrib><creatorcontrib>Morel, Aurélie</creatorcontrib><creatorcontrib>Cottet, Hervé</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oukacine, Farid</au><au>Morel, Aurélie</au><au>Cottet, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Carboxylated Nanolatexes by Capillary Electrophoresis</atitle><jtitle>Langmuir</jtitle><date>2011</date><risdate>2011</risdate><volume>27</volume><spage>4040</spage><epage>4047</epage><pages>4040-4047</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Poly(styrene-co-acrylic acid) (St/AA) and poly(styrene-co-methacrylic acid) (St/MA) nanolatexes with different acid contents were prepared by emulsion copolymerization and were analyzed by capillary electrophoresis (CE) and by laser doppler velocimetry (LDV). Due to the intrinsic differences in the methodologies, CE (separative technique) and LDV (zetametry, nonseparative technique) lead to very different electrophoretic mobility distributions. Beyond these differences, the variation of the electrophoretic mobility is a complex and nonlinear function of the hydrodynamic radius, the ionic strength, and the zeta potential. To gain better insight on the influence of the ionic strength and the acid content on the electrophoretic behavior of the nanolatexes, the electrophoretic mobility data were changed into surface charge densities using the O'Brien, White, and Ohshima modeling. This approach leads to the conclusion that the surface charge density is mainly controlled at high ionic strength (∼50 mM) by the adsorption of anionic surfactants coming from the sample. On the contrary, at low ionic strength, and/or in the presence of neutral surfactant in the electrolyte, the acid content was the main parameter controlling the surface charge density of the nanolatexes.</abstract><pub>American Chemical Society</pub><doi>10.1021/1a1048562</doi><orcidid>https://orcid.org/0000-0002-6876-175X</orcidid><orcidid>https://orcid.org/0000-0001-9983-5005</orcidid><orcidid>https://orcid.org/0000-0002-6876-175X</orcidid><orcidid>https://orcid.org/0000-0001-9983-5005</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2011, Vol.27, p.4040-4047
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_00772451v1
source American Chemical Society Journals
subjects Chemical Sciences
Organic chemistry
title Characterization of Carboxylated Nanolatexes by Capillary Electrophoresis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Carboxylated%20Nanolatexes%20by%20Capillary%20Electrophoresis&rft.jtitle=Langmuir&rft.au=Oukacine,%20Farid&rft.date=2011&rft.volume=27&rft.spage=4040&rft.epage=4047&rft.pages=4040-4047&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/1a1048562&rft_dat=%3Chal%3Eoai_HAL_hal_00772451v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true