Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean

The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2008-12, Vol.21 (24), p.6599-6615
Hauptverfasser: Biastoch, Arne, Böning, Claus W., Getzlaff, Julia, Molines, Jean-Marc, Madec, Gurvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6615
container_issue 24
container_start_page 6599
container_title Journal of climate
container_volume 21
creator Biastoch, Arne
Böning, Claus W.
Getzlaff, Julia
Molines, Jean-Marc
Madec, Gurvan
description The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.
doi_str_mv 10.1175/2008jcli2404.1
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00769988v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26259607</jstor_id><sourcerecordid>26259607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhhtRcFy9ehOCoOBhxko6_ZHj0H7syOhcFq-hJl1xMmS71yS9sAdh_8P-Q3-JaWdZwVNBvU_eStVbFC85rDhvqvcCoD0a74QEueKPigWvBCxBSvG4WECr5LJtqupp8SzGIwAXNcCi-NXhFCmy0bLNkCjgMEzof9_efSCDPXr2HYPDvfMu3TA3sHQg9pWC6904ZHV3TSFNYXDDD9a5YCaPKSuz3V_S9XMjTT2xb2NIB7ZOHofkDNsZwuF58cSij_Tivp4VF58-XnTny-3u86Zbb5dGcpWWyjZYQyPQ7hvZUy-qVppK9tLaRgja9wClKS2R7KFWCKYBVSqyPC8pqS3Pincn2wN6fRXcJYYbPaLT5-utnnsATa1U217zzL49sVdh_DlRTPrSRUM-f5vGKWoBZSvLagZf_wcex3yJvIYWQiiouFIZWp0gE8YYA9mH8Rz0nJqeU_vSbTdzanp2fXPvitGgtzkQ4-LDK8EBal7KzL06cceYxvBPr0Wl8qnKP966olY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222905199</pqid></control><display><type>article</type><title>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Biastoch, Arne ; Böning, Claus W. ; Getzlaff, Julia ; Molines, Jean-Marc ; Madec, Gurvan</creator><creatorcontrib>Biastoch, Arne ; Böning, Claus W. ; Getzlaff, Julia ; Molines, Jean-Marc ; Madec, Gurvan</creatorcontrib><description>The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2008jcli2404.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric circulation ; Atmospheric models ; Atmospherics ; Climate change ; Climate models ; Climatology ; Deep water ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics ; Marine ; Oceanic climates ; Oceanography ; Oceans ; Physics ; Physics of the oceans ; Sciences of the Universe ; Sea transportation ; Seas ; Standard deviation ; Temperature distribution ; Thermohaline structure and circulation. Turbulence and diffusion ; Time series ; Trends ; Variability ; Wind</subject><ispartof>Journal of climate, 2008-12, Vol.21 (24), p.6599-6615</ispartof><rights>2008 American Meteorological Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Meteorological Society Dec 15, 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</citedby><cites>FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</cites><orcidid>0000-0003-1665-6816 ; 0000-0002-6447-4198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26259607$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26259607$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21006134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00769988$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biastoch, Arne</creatorcontrib><creatorcontrib>Böning, Claus W.</creatorcontrib><creatorcontrib>Getzlaff, Julia</creatorcontrib><creatorcontrib>Molines, Jean-Marc</creatorcontrib><creatorcontrib>Madec, Gurvan</creatorcontrib><title>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</title><title>Journal of climate</title><description>The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.</description><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Deep water</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics</subject><subject>Marine</subject><subject>Oceanic climates</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Physics</subject><subject>Physics of the oceans</subject><subject>Sciences of the Universe</subject><subject>Sea transportation</subject><subject>Seas</subject><subject>Standard deviation</subject><subject>Temperature distribution</subject><subject>Thermohaline structure and circulation. Turbulence and diffusion</subject><subject>Time series</subject><subject>Trends</subject><subject>Variability</subject><subject>Wind</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU2LFDEQhhtRcFy9ehOCoOBhxko6_ZHj0H7syOhcFq-hJl1xMmS71yS9sAdh_8P-Q3-JaWdZwVNBvU_eStVbFC85rDhvqvcCoD0a74QEueKPigWvBCxBSvG4WECr5LJtqupp8SzGIwAXNcCi-NXhFCmy0bLNkCjgMEzof9_efSCDPXr2HYPDvfMu3TA3sHQg9pWC6904ZHV3TSFNYXDDD9a5YCaPKSuz3V_S9XMjTT2xb2NIB7ZOHofkDNsZwuF58cSij_Tivp4VF58-XnTny-3u86Zbb5dGcpWWyjZYQyPQ7hvZUy-qVppK9tLaRgja9wClKS2R7KFWCKYBVSqyPC8pqS3Pincn2wN6fRXcJYYbPaLT5-utnnsATa1U217zzL49sVdh_DlRTPrSRUM-f5vGKWoBZSvLagZf_wcex3yJvIYWQiiouFIZWp0gE8YYA9mH8Rz0nJqeU_vSbTdzanp2fXPvitGgtzkQ4-LDK8EBal7KzL06cceYxvBPr0Wl8qnKP966olY</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Biastoch, Arne</creator><creator>Böning, Claus W.</creator><creator>Getzlaff, Julia</creator><creator>Molines, Jean-Marc</creator><creator>Madec, Gurvan</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1665-6816</orcidid><orcidid>https://orcid.org/0000-0002-6447-4198</orcidid></search><sort><creationdate>20081215</creationdate><title>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</title><author>Biastoch, Arne ; Böning, Claus W. ; Getzlaff, Julia ; Molines, Jean-Marc ; Madec, Gurvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Deep water</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics</topic><topic>Marine</topic><topic>Oceanic climates</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Physics</topic><topic>Physics of the oceans</topic><topic>Sciences of the Universe</topic><topic>Sea transportation</topic><topic>Seas</topic><topic>Standard deviation</topic><topic>Temperature distribution</topic><topic>Thermohaline structure and circulation. Turbulence and diffusion</topic><topic>Time series</topic><topic>Trends</topic><topic>Variability</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biastoch, Arne</creatorcontrib><creatorcontrib>Böning, Claus W.</creatorcontrib><creatorcontrib>Getzlaff, Julia</creatorcontrib><creatorcontrib>Molines, Jean-Marc</creatorcontrib><creatorcontrib>Madec, Gurvan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biastoch, Arne</au><au>Böning, Claus W.</au><au>Getzlaff, Julia</au><au>Molines, Jean-Marc</au><au>Madec, Gurvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</atitle><jtitle>Journal of climate</jtitle><date>2008-12-15</date><risdate>2008</risdate><volume>21</volume><issue>24</issue><spage>6599</spage><epage>6615</epage><pages>6599-6615</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2008jcli2404.1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1665-6816</orcidid><orcidid>https://orcid.org/0000-0002-6447-4198</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2008-12, Vol.21 (24), p.6599-6615
issn 0894-8755
1520-0442
language eng
recordid cdi_hal_primary_oai_HAL_hal_00769988v1
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Atmospheric circulation
Atmospheric models
Atmospherics
Climate change
Climate models
Climatology
Deep water
Earth Sciences
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics
Marine
Oceanic climates
Oceanography
Oceans
Physics
Physics of the oceans
Sciences of the Universe
Sea transportation
Seas
Standard deviation
Temperature distribution
Thermohaline structure and circulation. Turbulence and diffusion
Time series
Trends
Variability
Wind
title Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causes%20of%20Interannual%E2%80%93Decadal%20Variability%20in%20the%20Meridional%20Overturning%20Circulation%20of%20the%20Midlatitude%20North%20Atlantic%20Ocean&rft.jtitle=Journal%20of%20climate&rft.au=Biastoch,%20Arne&rft.date=2008-12-15&rft.volume=21&rft.issue=24&rft.spage=6599&rft.epage=6615&rft.pages=6599-6615&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2008jcli2404.1&rft_dat=%3Cjstor_hal_p%3E26259607%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222905199&rft_id=info:pmid/&rft_jstor_id=26259607&rfr_iscdi=true