Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean
The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in r...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2008-12, Vol.21 (24), p.6599-6615 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6615 |
---|---|
container_issue | 24 |
container_start_page | 6599 |
container_title | Journal of climate |
container_volume | 21 |
creator | Biastoch, Arne Böning, Claus W. Getzlaff, Julia Molines, Jean-Marc Madec, Gurvan |
description | The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations. |
doi_str_mv | 10.1175/2008jcli2404.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00769988v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26259607</jstor_id><sourcerecordid>26259607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhhtRcFy9ehOCoOBhxko6_ZHj0H7syOhcFq-hJl1xMmS71yS9sAdh_8P-Q3-JaWdZwVNBvU_eStVbFC85rDhvqvcCoD0a74QEueKPigWvBCxBSvG4WECr5LJtqupp8SzGIwAXNcCi-NXhFCmy0bLNkCjgMEzof9_efSCDPXr2HYPDvfMu3TA3sHQg9pWC6904ZHV3TSFNYXDDD9a5YCaPKSuz3V_S9XMjTT2xb2NIB7ZOHofkDNsZwuF58cSij_Tivp4VF58-XnTny-3u86Zbb5dGcpWWyjZYQyPQ7hvZUy-qVppK9tLaRgja9wClKS2R7KFWCKYBVSqyPC8pqS3Pincn2wN6fRXcJYYbPaLT5-utnnsATa1U217zzL49sVdh_DlRTPrSRUM-f5vGKWoBZSvLagZf_wcex3yJvIYWQiiouFIZWp0gE8YYA9mH8Rz0nJqeU_vSbTdzanp2fXPvitGgtzkQ4-LDK8EBal7KzL06cceYxvBPr0Wl8qnKP966olY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222905199</pqid></control><display><type>article</type><title>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Biastoch, Arne ; Böning, Claus W. ; Getzlaff, Julia ; Molines, Jean-Marc ; Madec, Gurvan</creator><creatorcontrib>Biastoch, Arne ; Böning, Claus W. ; Getzlaff, Julia ; Molines, Jean-Marc ; Madec, Gurvan</creatorcontrib><description>The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2008jcli2404.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric circulation ; Atmospheric models ; Atmospherics ; Climate change ; Climate models ; Climatology ; Deep water ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics ; Marine ; Oceanic climates ; Oceanography ; Oceans ; Physics ; Physics of the oceans ; Sciences of the Universe ; Sea transportation ; Seas ; Standard deviation ; Temperature distribution ; Thermohaline structure and circulation. Turbulence and diffusion ; Time series ; Trends ; Variability ; Wind</subject><ispartof>Journal of climate, 2008-12, Vol.21 (24), p.6599-6615</ispartof><rights>2008 American Meteorological Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Meteorological Society Dec 15, 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</citedby><cites>FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</cites><orcidid>0000-0003-1665-6816 ; 0000-0002-6447-4198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26259607$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26259607$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21006134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00769988$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biastoch, Arne</creatorcontrib><creatorcontrib>Böning, Claus W.</creatorcontrib><creatorcontrib>Getzlaff, Julia</creatorcontrib><creatorcontrib>Molines, Jean-Marc</creatorcontrib><creatorcontrib>Madec, Gurvan</creatorcontrib><title>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</title><title>Journal of climate</title><description>The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.</description><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Deep water</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics</subject><subject>Marine</subject><subject>Oceanic climates</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Physics</subject><subject>Physics of the oceans</subject><subject>Sciences of the Universe</subject><subject>Sea transportation</subject><subject>Seas</subject><subject>Standard deviation</subject><subject>Temperature distribution</subject><subject>Thermohaline structure and circulation. Turbulence and diffusion</subject><subject>Time series</subject><subject>Trends</subject><subject>Variability</subject><subject>Wind</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU2LFDEQhhtRcFy9ehOCoOBhxko6_ZHj0H7syOhcFq-hJl1xMmS71yS9sAdh_8P-Q3-JaWdZwVNBvU_eStVbFC85rDhvqvcCoD0a74QEueKPigWvBCxBSvG4WECr5LJtqupp8SzGIwAXNcCi-NXhFCmy0bLNkCjgMEzof9_efSCDPXr2HYPDvfMu3TA3sHQg9pWC6904ZHV3TSFNYXDDD9a5YCaPKSuz3V_S9XMjTT2xb2NIB7ZOHofkDNsZwuF58cSij_Tivp4VF58-XnTny-3u86Zbb5dGcpWWyjZYQyPQ7hvZUy-qVppK9tLaRgja9wClKS2R7KFWCKYBVSqyPC8pqS3Pincn2wN6fRXcJYYbPaLT5-utnnsATa1U217zzL49sVdh_DlRTPrSRUM-f5vGKWoBZSvLagZf_wcex3yJvIYWQiiouFIZWp0gE8YYA9mH8Rz0nJqeU_vSbTdzanp2fXPvitGgtzkQ4-LDK8EBal7KzL06cceYxvBPr0Wl8qnKP966olY</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Biastoch, Arne</creator><creator>Böning, Claus W.</creator><creator>Getzlaff, Julia</creator><creator>Molines, Jean-Marc</creator><creator>Madec, Gurvan</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1665-6816</orcidid><orcidid>https://orcid.org/0000-0002-6447-4198</orcidid></search><sort><creationdate>20081215</creationdate><title>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</title><author>Biastoch, Arne ; Böning, Claus W. ; Getzlaff, Julia ; Molines, Jean-Marc ; Madec, Gurvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-9f7a6072afb74ded2584c54d4ff722ebd003c3fee4d069a0c70939ef11264e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Deep water</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics</topic><topic>Marine</topic><topic>Oceanic climates</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Physics</topic><topic>Physics of the oceans</topic><topic>Sciences of the Universe</topic><topic>Sea transportation</topic><topic>Seas</topic><topic>Standard deviation</topic><topic>Temperature distribution</topic><topic>Thermohaline structure and circulation. Turbulence and diffusion</topic><topic>Time series</topic><topic>Trends</topic><topic>Variability</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biastoch, Arne</creatorcontrib><creatorcontrib>Böning, Claus W.</creatorcontrib><creatorcontrib>Getzlaff, Julia</creatorcontrib><creatorcontrib>Molines, Jean-Marc</creatorcontrib><creatorcontrib>Madec, Gurvan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biastoch, Arne</au><au>Böning, Claus W.</au><au>Getzlaff, Julia</au><au>Molines, Jean-Marc</au><au>Madec, Gurvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean</atitle><jtitle>Journal of climate</jtitle><date>2008-12-15</date><risdate>2008</risdate><volume>21</volume><issue>24</issue><spage>6599</spage><epage>6615</epage><pages>6599-6615</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–½°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2008jcli2404.1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1665-6816</orcidid><orcidid>https://orcid.org/0000-0002-6447-4198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2008-12, Vol.21 (24), p.6599-6615 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00769988v1 |
source | Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Atmospheric circulation Atmospheric models Atmospherics Climate change Climate models Climatology Deep water Earth Sciences Earth, ocean, space Exact sciences and technology External geophysics Geophysics Marine Oceanic climates Oceanography Oceans Physics Physics of the oceans Sciences of the Universe Sea transportation Seas Standard deviation Temperature distribution Thermohaline structure and circulation. Turbulence and diffusion Time series Trends Variability Wind |
title | Causes of Interannual–Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causes%20of%20Interannual%E2%80%93Decadal%20Variability%20in%20the%20Meridional%20Overturning%20Circulation%20of%20the%20Midlatitude%20North%20Atlantic%20Ocean&rft.jtitle=Journal%20of%20climate&rft.au=Biastoch,%20Arne&rft.date=2008-12-15&rft.volume=21&rft.issue=24&rft.spage=6599&rft.epage=6615&rft.pages=6599-6615&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2008jcli2404.1&rft_dat=%3Cjstor_hal_p%3E26259607%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222905199&rft_id=info:pmid/&rft_jstor_id=26259607&rfr_iscdi=true |