U–Mo/Al–Si interaction: Influence of Si concentration
Within the framework of the development of low enriched nuclear fuels for research reactors, U–Mo/Al is the most promising option that has however to be optimised. Indeed at the U–Mo/Al interfaces between U–Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unac...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2010-04, Vol.399 (2), p.189-199 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 2 |
container_start_page | 189 |
container_title | Journal of nuclear materials |
container_volume | 399 |
creator | Allenou, J. Palancher, H. Iltis, X. Cornen, M. Tougait, O. Tucoulou, R. Welcomme, E. Martin, Ph Valot, C. Charollais, F. Anselmet, M.C. Lemoine, P. |
description | Within the framework of the development of low enriched nuclear fuels for research reactors, U–Mo/Al is the most promising option that has however to be optimised. Indeed at the U–Mo/Al interfaces between U–Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling.
Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U–Mo/Al–Si protective layer around U–Mo particles appeared during fuel manufacturing.
In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U–Mo7/Al–Si diffusion couples obtained by thermal annealing at 450
°C.
Two types of interaction layers have been evidenced depending on the Si content in the Al–Si alloy: the threshold value is found at about 5
wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10
wt.%, the U–Mo7/Al–Si interaction is bi-layered and the Si-rich part is located close to the Al–Si for low Si concentrations (below 5
wt.%) and close to the U–Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5
wt.%, the Si-rich sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20, when the other sub-layer (close to U–Mo) is silicon free and made of UAl
3 and U
6Mo
4Al
43. For Si weight concentrations above 5
wt.%, the Si-rich part becomes U
3(Si,
Al)
5
+
U(Al,
Si)
3 (close to U–Mo) and the other sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20.
On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U–Mo and Al–Si alloys (i.e. different protective layers). |
doi_str_mv | 10.1016/j.jnucmat.2010.01.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00761895v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311510000322</els_id><sourcerecordid>753744724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fea926237acf28e8e1a2636047c2305a687ce293b963a8f6eb7c830898ae12e93</originalsourceid><addsrcrecordid>eNqFkM1KJDEQgIOs4OzoIwhzWWQPPVaSzk97WQbxD0Y8qOdQxmrM0NNxkx5hb77DvqFPYpoZvAoFFaq-qiIfY8cc5hy4Pl3NV_3Gr3GYCyg14CXsHptwa2RVWwE_2ARAiEpyrg7Yz5xXAKAaUBPWPH68_7-Np4uu5PswC_1ACf0QYn82u-nbbkO9p1lsZ6XpY3n3Q8Kxfcj2W-wyHe3ylD1eXjycX1fLu6ub88Wy8jWooWoJG6GFNOhbYckSR6Glhtp4IUGhtsaTaORToyXaVtOT8VaCbSwSF9TIKfu93fuCnXtNYY3pn4sY3PVi6cYagNHcNuqNF_Zky76m-HdDeXDrkD11HfYUN9kZJU1dG1EXUm1Jn2LOidqv1RzcaNWt3M6qG6064CVsmfu1u4DZY9cm7H3IX8NCaKtE-cqU_dlyVNS8BUou-zCqfA6J_OCeY_jm0iflho9k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753744724</pqid></control><display><type>article</type><title>U–Mo/Al–Si interaction: Influence of Si concentration</title><source>Elsevier ScienceDirect Journals</source><creator>Allenou, J. ; Palancher, H. ; Iltis, X. ; Cornen, M. ; Tougait, O. ; Tucoulou, R. ; Welcomme, E. ; Martin, Ph ; Valot, C. ; Charollais, F. ; Anselmet, M.C. ; Lemoine, P.</creator><creatorcontrib>Allenou, J. ; Palancher, H. ; Iltis, X. ; Cornen, M. ; Tougait, O. ; Tucoulou, R. ; Welcomme, E. ; Martin, Ph ; Valot, C. ; Charollais, F. ; Anselmet, M.C. ; Lemoine, P.</creatorcontrib><description>Within the framework of the development of low enriched nuclear fuels for research reactors, U–Mo/Al is the most promising option that has however to be optimised. Indeed at the U–Mo/Al interfaces between U–Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling.
Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U–Mo/Al–Si protective layer around U–Mo particles appeared during fuel manufacturing.
In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U–Mo7/Al–Si diffusion couples obtained by thermal annealing at 450
°C.
Two types of interaction layers have been evidenced depending on the Si content in the Al–Si alloy: the threshold value is found at about 5
wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10
wt.%, the U–Mo7/Al–Si interaction is bi-layered and the Si-rich part is located close to the Al–Si for low Si concentrations (below 5
wt.%) and close to the U–Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5
wt.%, the Si-rich sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20, when the other sub-layer (close to U–Mo) is silicon free and made of UAl
3 and U
6Mo
4Al
43. For Si weight concentrations above 5
wt.%, the Si-rich part becomes U
3(Si,
Al)
5
+
U(Al,
Si)
3 (close to U–Mo) and the other sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20.
On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U–Mo and Al–Si alloys (i.e. different protective layers).</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2010.01.018</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Aluminum base alloys ; Annealing ; Applied sciences ; Chemical Sciences ; Concentration (composition) ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Intermetallic compounds ; Material chemistry ; Micrometers ; Nuclear fuels ; Preparation and processing of nuclear fuels ; Protective ; Silicon</subject><ispartof>Journal of nuclear materials, 2010-04, Vol.399 (2), p.189-199</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fea926237acf28e8e1a2636047c2305a687ce293b963a8f6eb7c830898ae12e93</citedby><cites>FETCH-LOGICAL-c405t-fea926237acf28e8e1a2636047c2305a687ce293b963a8f6eb7c830898ae12e93</cites><orcidid>0000-0002-3758-6717 ; 0000-0003-0402-8812 ; 0000-0003-2743-2068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311510000322$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22685296$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00761895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Allenou, J.</creatorcontrib><creatorcontrib>Palancher, H.</creatorcontrib><creatorcontrib>Iltis, X.</creatorcontrib><creatorcontrib>Cornen, M.</creatorcontrib><creatorcontrib>Tougait, O.</creatorcontrib><creatorcontrib>Tucoulou, R.</creatorcontrib><creatorcontrib>Welcomme, E.</creatorcontrib><creatorcontrib>Martin, Ph</creatorcontrib><creatorcontrib>Valot, C.</creatorcontrib><creatorcontrib>Charollais, F.</creatorcontrib><creatorcontrib>Anselmet, M.C.</creatorcontrib><creatorcontrib>Lemoine, P.</creatorcontrib><title>U–Mo/Al–Si interaction: Influence of Si concentration</title><title>Journal of nuclear materials</title><description>Within the framework of the development of low enriched nuclear fuels for research reactors, U–Mo/Al is the most promising option that has however to be optimised. Indeed at the U–Mo/Al interfaces between U–Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling.
Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U–Mo/Al–Si protective layer around U–Mo particles appeared during fuel manufacturing.
In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U–Mo7/Al–Si diffusion couples obtained by thermal annealing at 450
°C.
Two types of interaction layers have been evidenced depending on the Si content in the Al–Si alloy: the threshold value is found at about 5
wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10
wt.%, the U–Mo7/Al–Si interaction is bi-layered and the Si-rich part is located close to the Al–Si for low Si concentrations (below 5
wt.%) and close to the U–Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5
wt.%, the Si-rich sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20, when the other sub-layer (close to U–Mo) is silicon free and made of UAl
3 and U
6Mo
4Al
43. For Si weight concentrations above 5
wt.%, the Si-rich part becomes U
3(Si,
Al)
5
+
U(Al,
Si)
3 (close to U–Mo) and the other sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20.
On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U–Mo and Al–Si alloys (i.e. different protective layers).</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Concentration (composition)</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Intermetallic compounds</subject><subject>Material chemistry</subject><subject>Micrometers</subject><subject>Nuclear fuels</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Protective</subject><subject>Silicon</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KJDEQgIOs4OzoIwhzWWQPPVaSzk97WQbxD0Y8qOdQxmrM0NNxkx5hb77DvqFPYpoZvAoFFaq-qiIfY8cc5hy4Pl3NV_3Gr3GYCyg14CXsHptwa2RVWwE_2ARAiEpyrg7Yz5xXAKAaUBPWPH68_7-Np4uu5PswC_1ACf0QYn82u-nbbkO9p1lsZ6XpY3n3Q8Kxfcj2W-wyHe3ylD1eXjycX1fLu6ub88Wy8jWooWoJG6GFNOhbYckSR6Glhtp4IUGhtsaTaORToyXaVtOT8VaCbSwSF9TIKfu93fuCnXtNYY3pn4sY3PVi6cYagNHcNuqNF_Zky76m-HdDeXDrkD11HfYUN9kZJU1dG1EXUm1Jn2LOidqv1RzcaNWt3M6qG6064CVsmfu1u4DZY9cm7H3IX8NCaKtE-cqU_dlyVNS8BUou-zCqfA6J_OCeY_jm0iflho9k</recordid><startdate>20100430</startdate><enddate>20100430</enddate><creator>Allenou, J.</creator><creator>Palancher, H.</creator><creator>Iltis, X.</creator><creator>Cornen, M.</creator><creator>Tougait, O.</creator><creator>Tucoulou, R.</creator><creator>Welcomme, E.</creator><creator>Martin, Ph</creator><creator>Valot, C.</creator><creator>Charollais, F.</creator><creator>Anselmet, M.C.</creator><creator>Lemoine, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3758-6717</orcidid><orcidid>https://orcid.org/0000-0003-0402-8812</orcidid><orcidid>https://orcid.org/0000-0003-2743-2068</orcidid></search><sort><creationdate>20100430</creationdate><title>U–Mo/Al–Si interaction: Influence of Si concentration</title><author>Allenou, J. ; Palancher, H. ; Iltis, X. ; Cornen, M. ; Tougait, O. ; Tucoulou, R. ; Welcomme, E. ; Martin, Ph ; Valot, C. ; Charollais, F. ; Anselmet, M.C. ; Lemoine, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fea926237acf28e8e1a2636047c2305a687ce293b963a8f6eb7c830898ae12e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Concentration (composition)</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Intermetallic compounds</topic><topic>Material chemistry</topic><topic>Micrometers</topic><topic>Nuclear fuels</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Protective</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allenou, J.</creatorcontrib><creatorcontrib>Palancher, H.</creatorcontrib><creatorcontrib>Iltis, X.</creatorcontrib><creatorcontrib>Cornen, M.</creatorcontrib><creatorcontrib>Tougait, O.</creatorcontrib><creatorcontrib>Tucoulou, R.</creatorcontrib><creatorcontrib>Welcomme, E.</creatorcontrib><creatorcontrib>Martin, Ph</creatorcontrib><creatorcontrib>Valot, C.</creatorcontrib><creatorcontrib>Charollais, F.</creatorcontrib><creatorcontrib>Anselmet, M.C.</creatorcontrib><creatorcontrib>Lemoine, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allenou, J.</au><au>Palancher, H.</au><au>Iltis, X.</au><au>Cornen, M.</au><au>Tougait, O.</au><au>Tucoulou, R.</au><au>Welcomme, E.</au><au>Martin, Ph</au><au>Valot, C.</au><au>Charollais, F.</au><au>Anselmet, M.C.</au><au>Lemoine, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>U–Mo/Al–Si interaction: Influence of Si concentration</atitle><jtitle>Journal of nuclear materials</jtitle><date>2010-04-30</date><risdate>2010</risdate><volume>399</volume><issue>2</issue><spage>189</spage><epage>199</epage><pages>189-199</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Within the framework of the development of low enriched nuclear fuels for research reactors, U–Mo/Al is the most promising option that has however to be optimised. Indeed at the U–Mo/Al interfaces between U–Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling.
Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U–Mo/Al–Si protective layer around U–Mo particles appeared during fuel manufacturing.
In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U–Mo7/Al–Si diffusion couples obtained by thermal annealing at 450
°C.
Two types of interaction layers have been evidenced depending on the Si content in the Al–Si alloy: the threshold value is found at about 5
wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10
wt.%, the U–Mo7/Al–Si interaction is bi-layered and the Si-rich part is located close to the Al–Si for low Si concentrations (below 5
wt.%) and close to the U–Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5
wt.%, the Si-rich sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20, when the other sub-layer (close to U–Mo) is silicon free and made of UAl
3 and U
6Mo
4Al
43. For Si weight concentrations above 5
wt.%, the Si-rich part becomes U
3(Si,
Al)
5
+
U(Al,
Si)
3 (close to U–Mo) and the other sub-layer (close to Al–Si) consists of U(Al,
Si)
3
+
UMo
2Al
20.
On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U–Mo and Al–Si alloys (i.e. different protective layers).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2010.01.018</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3758-6717</orcidid><orcidid>https://orcid.org/0000-0003-0402-8812</orcidid><orcidid>https://orcid.org/0000-0003-2743-2068</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2010-04, Vol.399 (2), p.189-199 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00761895v1 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum Aluminum base alloys Annealing Applied sciences Chemical Sciences Concentration (composition) Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy Intermetallic compounds Material chemistry Micrometers Nuclear fuels Preparation and processing of nuclear fuels Protective Silicon |
title | U–Mo/Al–Si interaction: Influence of Si concentration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=U%E2%80%93Mo/Al%E2%80%93Si%20interaction:%20Influence%20of%20Si%20concentration&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Allenou,%20J.&rft.date=2010-04-30&rft.volume=399&rft.issue=2&rft.spage=189&rft.epage=199&rft.pages=189-199&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2010.01.018&rft_dat=%3Cproquest_hal_p%3E753744724%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753744724&rft_id=info:pmid/&rft_els_id=S0022311510000322&rfr_iscdi=true |