n-type phosphorus-doped polycrystalline diamond on silicon substrates
The microwave plasma-assisted deposition of reproducible and homogeneously n-type phosphorus-doped polycrystalline (microcrystalline) diamond films on silicon substrates is described. The phosphorus incorporation is obtained by adding gaseous phosphine (PH 3) to the gas mixture during growth. The lo...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2008-07, Vol.17 (7), p.1324-1329 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1329 |
---|---|
container_issue | 7 |
container_start_page | 1324 |
container_title | Diamond and related materials |
container_volume | 17 |
creator | Ghodbane, S. Omnès, F. Bustarret, E. Tavares, C. Jomard, F. |
description | The microwave plasma-assisted deposition of reproducible and homogeneously n-type phosphorus-doped polycrystalline (microcrystalline) diamond films on silicon substrates is described. The phosphorus incorporation is obtained by adding gaseous phosphine (PH
3) to the gas mixture during growth. The low CH
4/H
2 ratio (0.15%) and the use of the same growth parameters as for homoepitaxial {111} films, led to a good crystalline quality of the continuous polycrystalline diamond layers, confirmed by SEM images and Raman spectroscopy measurements.
Secondary-ion mass spectrometry (SIMS) analysis measured a phosphorus concentration [P] of at least 7
×
10
17 cm
−
3
. Cathodoluminescence spectroscopy in our P-doped polycrystalline films shows a phosphorus bound exciton (BE
TO
P) peak between 5.142 and 5.181 eV. Cathodoluminescence and Raman-effect spectroscopy confirmed the improvement of the crystalline quality of our films as well as a decrease in the intensity of the internal strain when the grain size was decreased. Cathodoluminescence imaging and SIMS depth profile of phosphorus demonstrated a very good homogeneity of phosphorus incorporation in the films. |
doi_str_mv | 10.1016/j.diamond.2008.01.090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00761492v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963508001490</els_id><sourcerecordid>34372807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7c0e6294f82218a5222d288c280e220b294b5d6ed1120bbc492cffa7a55d49443</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB8_QZiNgosZb9LMayUiaoWCG12HNLlDU9LJmDsV-u_N0OLWRbjk5pzzkcPYDYeCA68eNoV1eht6WwiApgBeQAsnbMabus0BKnHKZtCKMm-reXnOLog2AFy0ks_YS5-P-wGzYR0onbij3IYBbTYEvzdxT6P23vWYHRFZ6DNy3plp7lY0Rj0iXbGzTnvC6-O8ZF-vL5_Pi3z58fb-_LTMjQQ55rUBrBK3a4TgjS6FEFY0jRENoBCwSk-r0lZoOU-3lZGtMF2na12WVrZSzi_Z_SF3rb0aotvquFdBO7V4WqppB1BXPNl-eNLeHbRDDN87pFFtHRn0XvcYdqTmcl4ncJ2E5UFoYiCK2P0lc1BTwWqjjr9XU8EKuEoFJ9_tEaDJaN9F3RtHf2YBVSWhnPIfDzpMzfw4jIqMw96gdRHNqGxw_5B-AcR6kyU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34372807</pqid></control><display><type>article</type><title>n-type phosphorus-doped polycrystalline diamond on silicon substrates</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ghodbane, S. ; Omnès, F. ; Bustarret, E. ; Tavares, C. ; Jomard, F.</creator><creatorcontrib>Ghodbane, S. ; Omnès, F. ; Bustarret, E. ; Tavares, C. ; Jomard, F.</creatorcontrib><description>The microwave plasma-assisted deposition of reproducible and homogeneously n-type phosphorus-doped polycrystalline (microcrystalline) diamond films on silicon substrates is described. The phosphorus incorporation is obtained by adding gaseous phosphine (PH
3) to the gas mixture during growth. The low CH
4/H
2 ratio (0.15%) and the use of the same growth parameters as for homoepitaxial {111} films, led to a good crystalline quality of the continuous polycrystalline diamond layers, confirmed by SEM images and Raman spectroscopy measurements.
Secondary-ion mass spectrometry (SIMS) analysis measured a phosphorus concentration [P] of at least 7
×
10
17 cm
−
3
. Cathodoluminescence spectroscopy in our P-doped polycrystalline films shows a phosphorus bound exciton (BE
TO
P) peak between 5.142 and 5.181 eV. Cathodoluminescence and Raman-effect spectroscopy confirmed the improvement of the crystalline quality of our films as well as a decrease in the intensity of the internal strain when the grain size was decreased. Cathodoluminescence imaging and SIMS depth profile of phosphorus demonstrated a very good homogeneity of phosphorus incorporation in the films.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2008.01.090</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed Matter ; Cross-disciplinary physics: materials science; rheology ; Engineering Sciences ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Ion and electron beam-assisted deposition; ion plating ; Materials ; Materials Science ; Methods of deposition of films and coatings; film growth and epitaxy ; MPCVD polycrystalline diamond ; n-type doping ; Phosphorus incorporation ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma-based ion implantation and deposition ; Specific materials ; Theory and models of film growth</subject><ispartof>Diamond and related materials, 2008-07, Vol.17 (7), p.1324-1329</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7c0e6294f82218a5222d288c280e220b294b5d6ed1120bbc492cffa7a55d49443</citedby><cites>FETCH-LOGICAL-c404t-7c0e6294f82218a5222d288c280e220b294b5d6ed1120bbc492cffa7a55d49443</cites><orcidid>0009-0006-2719-6455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925963508001490$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20664057$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00761492$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghodbane, S.</creatorcontrib><creatorcontrib>Omnès, F.</creatorcontrib><creatorcontrib>Bustarret, E.</creatorcontrib><creatorcontrib>Tavares, C.</creatorcontrib><creatorcontrib>Jomard, F.</creatorcontrib><title>n-type phosphorus-doped polycrystalline diamond on silicon substrates</title><title>Diamond and related materials</title><description>The microwave plasma-assisted deposition of reproducible and homogeneously n-type phosphorus-doped polycrystalline (microcrystalline) diamond films on silicon substrates is described. The phosphorus incorporation is obtained by adding gaseous phosphine (PH
3) to the gas mixture during growth. The low CH
4/H
2 ratio (0.15%) and the use of the same growth parameters as for homoepitaxial {111} films, led to a good crystalline quality of the continuous polycrystalline diamond layers, confirmed by SEM images and Raman spectroscopy measurements.
Secondary-ion mass spectrometry (SIMS) analysis measured a phosphorus concentration [P] of at least 7
×
10
17 cm
−
3
. Cathodoluminescence spectroscopy in our P-doped polycrystalline films shows a phosphorus bound exciton (BE
TO
P) peak between 5.142 and 5.181 eV. Cathodoluminescence and Raman-effect spectroscopy confirmed the improvement of the crystalline quality of our films as well as a decrease in the intensity of the internal strain when the grain size was decreased. Cathodoluminescence imaging and SIMS depth profile of phosphorus demonstrated a very good homogeneity of phosphorus incorporation in the films.</description><subject>Condensed Matter</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Ion and electron beam-assisted deposition; ion plating</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>MPCVD polycrystalline diamond</subject><subject>n-type doping</subject><subject>Phosphorus incorporation</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma-based ion implantation and deposition</subject><subject>Specific materials</subject><subject>Theory and models of film growth</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB8_QZiNgosZb9LMayUiaoWCG12HNLlDU9LJmDsV-u_N0OLWRbjk5pzzkcPYDYeCA68eNoV1eht6WwiApgBeQAsnbMabus0BKnHKZtCKMm-reXnOLog2AFy0ks_YS5-P-wGzYR0onbij3IYBbTYEvzdxT6P23vWYHRFZ6DNy3plp7lY0Rj0iXbGzTnvC6-O8ZF-vL5_Pi3z58fb-_LTMjQQ55rUBrBK3a4TgjS6FEFY0jRENoBCwSk-r0lZoOU-3lZGtMF2na12WVrZSzi_Z_SF3rb0aotvquFdBO7V4WqppB1BXPNl-eNLeHbRDDN87pFFtHRn0XvcYdqTmcl4ncJ2E5UFoYiCK2P0lc1BTwWqjjr9XU8EKuEoFJ9_tEaDJaN9F3RtHf2YBVSWhnPIfDzpMzfw4jIqMw96gdRHNqGxw_5B-AcR6kyU</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Ghodbane, S.</creator><creator>Omnès, F.</creator><creator>Bustarret, E.</creator><creator>Tavares, C.</creator><creator>Jomard, F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0006-2719-6455</orcidid></search><sort><creationdate>20080701</creationdate><title>n-type phosphorus-doped polycrystalline diamond on silicon substrates</title><author>Ghodbane, S. ; Omnès, F. ; Bustarret, E. ; Tavares, C. ; Jomard, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7c0e6294f82218a5222d288c280e220b294b5d6ed1120bbc492cffa7a55d49443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Condensed Matter</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Ion and electron beam-assisted deposition; ion plating</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>MPCVD polycrystalline diamond</topic><topic>n-type doping</topic><topic>Phosphorus incorporation</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma-based ion implantation and deposition</topic><topic>Specific materials</topic><topic>Theory and models of film growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghodbane, S.</creatorcontrib><creatorcontrib>Omnès, F.</creatorcontrib><creatorcontrib>Bustarret, E.</creatorcontrib><creatorcontrib>Tavares, C.</creatorcontrib><creatorcontrib>Jomard, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghodbane, S.</au><au>Omnès, F.</au><au>Bustarret, E.</au><au>Tavares, C.</au><au>Jomard, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>n-type phosphorus-doped polycrystalline diamond on silicon substrates</atitle><jtitle>Diamond and related materials</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>17</volume><issue>7</issue><spage>1324</spage><epage>1329</epage><pages>1324-1329</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>The microwave plasma-assisted deposition of reproducible and homogeneously n-type phosphorus-doped polycrystalline (microcrystalline) diamond films on silicon substrates is described. The phosphorus incorporation is obtained by adding gaseous phosphine (PH
3) to the gas mixture during growth. The low CH
4/H
2 ratio (0.15%) and the use of the same growth parameters as for homoepitaxial {111} films, led to a good crystalline quality of the continuous polycrystalline diamond layers, confirmed by SEM images and Raman spectroscopy measurements.
Secondary-ion mass spectrometry (SIMS) analysis measured a phosphorus concentration [P] of at least 7
×
10
17 cm
−
3
. Cathodoluminescence spectroscopy in our P-doped polycrystalline films shows a phosphorus bound exciton (BE
TO
P) peak between 5.142 and 5.181 eV. Cathodoluminescence and Raman-effect spectroscopy confirmed the improvement of the crystalline quality of our films as well as a decrease in the intensity of the internal strain when the grain size was decreased. Cathodoluminescence imaging and SIMS depth profile of phosphorus demonstrated a very good homogeneity of phosphorus incorporation in the films.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2008.01.090</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0006-2719-6455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2008-07, Vol.17 (7), p.1324-1329 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00761492v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Condensed Matter Cross-disciplinary physics: materials science rheology Engineering Sciences Exact sciences and technology Fullerenes and related materials diamonds, graphite Ion and electron beam-assisted deposition ion plating Materials Materials Science Methods of deposition of films and coatings film growth and epitaxy MPCVD polycrystalline diamond n-type doping Phosphorus incorporation Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma applications Plasma-based ion implantation and deposition Specific materials Theory and models of film growth |
title | n-type phosphorus-doped polycrystalline diamond on silicon substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=n-type%20phosphorus-doped%20polycrystalline%20diamond%20on%20silicon%20substrates&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Ghodbane,%20S.&rft.date=2008-07-01&rft.volume=17&rft.issue=7&rft.spage=1324&rft.epage=1329&rft.pages=1324-1329&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2008.01.090&rft_dat=%3Cproquest_hal_p%3E34372807%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34372807&rft_id=info:pmid/&rft_els_id=S0925963508001490&rfr_iscdi=true |