Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales
How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, a...
Gespeichert in:
Veröffentlicht in: | Journal of Bacteriology 2012-07, Vol.194 (13), p.3426-3436 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3436 |
---|---|
container_issue | 13 |
container_start_page | 3426 |
container_title | Journal of Bacteriology |
container_volume | 194 |
creator | Passot, Fanny M Calderon, Virginie Fichant, Gwennaele Lane, David Pasta, Franck |
description | How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species. |
doi_str_mv | 10.1128/JB.00041-12 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00760173v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020190489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEotvCiTtEICQQShl_Jr4gdVeFUq0EUqnEzfIm9sZLYhc72ar_PU53KdATJ0ue3zz7vZkse4bgGCFcvT-fHwMARQXCD7IZAlEVjBF4mM0AMCoEEuQgO4xxA4AoZfhxdoAxw7gSYpZ9X2g3BN_roPO5dY1161y5Jj_d-m4crHe5N_miTYSPvldd_lWFwd4WLm7ioPuYW5cPbeoew4_Wd40OVnU6PskeGdVF_XR_HmWXH0-_Lc6K5ZdPnxcny6JmrBwKwrQBgg1w3JTAtalEw2HFiFkRrilhQoHSyjRC8ZrqlQZNjC4rhhpkcM3JUfZhp3s1rnrd1JMd1cmrYHsVbqRXVv5bcbaVa7-VhBJaUpoE3u4E2nttZydLOd0BlBxQSbYosW_2jwX_c9RxkL2Nte465bQfo0SAKecIl-x_UEACaCUS-uoeuvFjcCm1iUKEUcYn6t2OqoOPMWhz91kEcloEeT6Xt4sgEU70879juWN_Tz4Br_eAirXqTFCutvEPxwELxicfL_fx2HV7bYOWKvZys5JIUIlIihFPQ3ixg4zyUq1DErq8SP7YtHJVJTD5BeXFznE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021354569</pqid></control><display><type>article</type><title>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Passot, Fanny M ; Calderon, Virginie ; Fichant, Gwennaele ; Lane, David ; Pasta, Franck</creator><creatorcontrib>Passot, Fanny M ; Calderon, Virginie ; Fichant, Gwennaele ; Lane, David ; Pasta, Franck</creatorcontrib><description>How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>EISSN: 1067-8832</identifier><identifier>DOI: 10.1128/JB.00041-12</identifier><identifier>PMID: 22522899</identifier><identifier>CODEN: JOBAAY</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>bacteria ; Bacterial Proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Base Sequence ; Betaproteobacteria ; Betaproteobacteria - genetics ; binding proteins ; Bioassays ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Burkholderia ; Burkholderia cenocepacia ; Burkholderia cenocepacia - genetics ; Burkholderia cenocepacia - growth & development ; Centromere ; Centromere - metabolism ; centromeres ; Chromosome Segregation ; Chromosomes ; Chromosomes, Bacterial ; Chromosomes, Bacterial - genetics ; Chromosomes, Bacterial - metabolism ; Computational Biology ; cystic fibrosis ; Electrophoretic Mobility Shift Assay ; evolution ; Evolution, Molecular ; extended families ; Fundamental and applied biological sciences. Psychology ; gel electrophoresis ; genome ; Genomes ; Gram-negative bacteria ; Humans ; Life Sciences ; Microbiology ; Microbiology and Parasitology ; Miscellaneous ; Molecular Sequence Data ; Mutation ; pathogens ; Plasmids ; Plasmids - genetics ; Ralstonia pickettii ; Replicon</subject><ispartof>Journal of Bacteriology, 2012-07, Vol.194 (13), p.3426-3436</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2012, American Society for Microbiology. All Rights Reserved. 2012 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</citedby><cites>FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</cites><orcidid>0000-0002-0257-816X ; 0000-0001-5480-0239 ; 0000-0002-8656-4725 ; 0000-0002-4267-3452 ; 0000-0003-4972-5494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434744/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434744/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26029565$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22522899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00760173$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Passot, Fanny M</creatorcontrib><creatorcontrib>Calderon, Virginie</creatorcontrib><creatorcontrib>Fichant, Gwennaele</creatorcontrib><creatorcontrib>Lane, David</creatorcontrib><creatorcontrib>Pasta, Franck</creatorcontrib><title>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</title><title>Journal of Bacteriology</title><addtitle>J Bacteriol</addtitle><description>How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.</description><subject>bacteria</subject><subject>Bacterial Proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Betaproteobacteria</subject><subject>Betaproteobacteria - genetics</subject><subject>binding proteins</subject><subject>Bioassays</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Burkholderia</subject><subject>Burkholderia cenocepacia</subject><subject>Burkholderia cenocepacia - genetics</subject><subject>Burkholderia cenocepacia - growth & development</subject><subject>Centromere</subject><subject>Centromere - metabolism</subject><subject>centromeres</subject><subject>Chromosome Segregation</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>Chromosomes, Bacterial - metabolism</subject><subject>Computational Biology</subject><subject>cystic fibrosis</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>extended families</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gel electrophoresis</subject><subject>genome</subject><subject>Genomes</subject><subject>Gram-negative bacteria</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Microbiology and Parasitology</subject><subject>Miscellaneous</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>pathogens</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Ralstonia pickettii</subject><subject>Replicon</subject><issn>0021-9193</issn><issn>1098-5530</issn><issn>1067-8832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v1DAQxSMEotvCiTtEICQQShl_Jr4gdVeFUq0EUqnEzfIm9sZLYhc72ar_PU53KdATJ0ue3zz7vZkse4bgGCFcvT-fHwMARQXCD7IZAlEVjBF4mM0AMCoEEuQgO4xxA4AoZfhxdoAxw7gSYpZ9X2g3BN_roPO5dY1161y5Jj_d-m4crHe5N_miTYSPvldd_lWFwd4WLm7ioPuYW5cPbeoew4_Wd40OVnU6PskeGdVF_XR_HmWXH0-_Lc6K5ZdPnxcny6JmrBwKwrQBgg1w3JTAtalEw2HFiFkRrilhQoHSyjRC8ZrqlQZNjC4rhhpkcM3JUfZhp3s1rnrd1JMd1cmrYHsVbqRXVv5bcbaVa7-VhBJaUpoE3u4E2nttZydLOd0BlBxQSbYosW_2jwX_c9RxkL2Nte465bQfo0SAKecIl-x_UEACaCUS-uoeuvFjcCm1iUKEUcYn6t2OqoOPMWhz91kEcloEeT6Xt4sgEU70879juWN_Tz4Br_eAirXqTFCutvEPxwELxicfL_fx2HV7bYOWKvZys5JIUIlIihFPQ3ixg4zyUq1DErq8SP7YtHJVJTD5BeXFznE</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Passot, Fanny M</creator><creator>Calderon, Virginie</creator><creator>Fichant, Gwennaele</creator><creator>Lane, David</creator><creator>Pasta, Franck</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0257-816X</orcidid><orcidid>https://orcid.org/0000-0001-5480-0239</orcidid><orcidid>https://orcid.org/0000-0002-8656-4725</orcidid><orcidid>https://orcid.org/0000-0002-4267-3452</orcidid><orcidid>https://orcid.org/0000-0003-4972-5494</orcidid></search><sort><creationdate>20120701</creationdate><title>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</title><author>Passot, Fanny M ; Calderon, Virginie ; Fichant, Gwennaele ; Lane, David ; Pasta, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-35ef032f062d706ef89d60b53fb36e4359a0aeafd9a6c4ebe0e3fe7851d1f2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bacteria</topic><topic>Bacterial Proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Betaproteobacteria</topic><topic>Betaproteobacteria - genetics</topic><topic>binding proteins</topic><topic>Bioassays</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Burkholderia</topic><topic>Burkholderia cenocepacia</topic><topic>Burkholderia cenocepacia - genetics</topic><topic>Burkholderia cenocepacia - growth & development</topic><topic>Centromere</topic><topic>Centromere - metabolism</topic><topic>centromeres</topic><topic>Chromosome Segregation</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>Chromosomes, Bacterial - metabolism</topic><topic>Computational Biology</topic><topic>cystic fibrosis</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>extended families</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gel electrophoresis</topic><topic>genome</topic><topic>Genomes</topic><topic>Gram-negative bacteria</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Microbiology and Parasitology</topic><topic>Miscellaneous</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>pathogens</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Ralstonia pickettii</topic><topic>Replicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passot, Fanny M</creatorcontrib><creatorcontrib>Calderon, Virginie</creatorcontrib><creatorcontrib>Fichant, Gwennaele</creatorcontrib><creatorcontrib>Lane, David</creatorcontrib><creatorcontrib>Pasta, Franck</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passot, Fanny M</au><au>Calderon, Virginie</au><au>Fichant, Gwennaele</au><au>Lane, David</au><au>Pasta, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales</atitle><jtitle>Journal of Bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>194</volume><issue>13</issue><spage>3426</spage><epage>3436</epage><pages>3426-3436</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><eissn>1067-8832</eissn><coden>JOBAAY</coden><abstract>How split genomes arise and evolve in bacteria is poorly understood. Since each replicon of such genomes encodes a specific partition (Par) system, the evolution of Par systems could shed light on their evolution. The cystic fibrosis pathogen Burkholderia cenocepacia has three chromosomes (c1, c2, and c3) and one plasmid (pBC), whose compatibility depends on strictly specific interactions of the centromere sequences (parS) with their cognate binding proteins (ParB). However, the Par systems of B. cenocepacia c2, c3, and pBC share many features, suggesting that they arose within an extended family. Database searching revealed seven subfamilies of Par systems like those of B. cenocepacia. All are from plasmids and secondary chromosomes of the Burkholderiales, which reinforces the proposal of an extended family. The subfamily of the Par system of B. cenocepacia c3 includes plasmid variants with parS sequences divergent from that of c3. Using electrophoretic mobility shift assay (EMSA), we found that ParB-c3 binds specifically to centromeres of these variants, despite high DNA sequence divergence. We suggest that the Par system of B. cenocepacia c3 has preserved the features of an ancestral system. In contrast, these features have diverged variably in the plasmid descendants. One such descendant is found both in Ralstonia pickettii 12D, on a free plasmid, and in Ralstonia pickettii 12J, on a plasmid integrated into the main chromosome. These observations suggest that we are witnessing a plasmid-chromosome interaction from which a third chromosome will emerge in a two-chromosome species.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>22522899</pmid><doi>10.1128/JB.00041-12</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0257-816X</orcidid><orcidid>https://orcid.org/0000-0001-5480-0239</orcidid><orcidid>https://orcid.org/0000-0002-8656-4725</orcidid><orcidid>https://orcid.org/0000-0002-4267-3452</orcidid><orcidid>https://orcid.org/0000-0003-4972-5494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9193 |
ispartof | Journal of Bacteriology, 2012-07, Vol.194 (13), p.3426-3436 |
issn | 0021-9193 1098-5530 1067-8832 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00760173v1 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | bacteria Bacterial Proteins Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Base Sequence Betaproteobacteria Betaproteobacteria - genetics binding proteins Bioassays Biochemistry, Molecular Biology Biological and medical sciences Burkholderia Burkholderia cenocepacia Burkholderia cenocepacia - genetics Burkholderia cenocepacia - growth & development Centromere Centromere - metabolism centromeres Chromosome Segregation Chromosomes Chromosomes, Bacterial Chromosomes, Bacterial - genetics Chromosomes, Bacterial - metabolism Computational Biology cystic fibrosis Electrophoretic Mobility Shift Assay evolution Evolution, Molecular extended families Fundamental and applied biological sciences. Psychology gel electrophoresis genome Genomes Gram-negative bacteria Humans Life Sciences Microbiology Microbiology and Parasitology Miscellaneous Molecular Sequence Data Mutation pathogens Plasmids Plasmids - genetics Ralstonia pickettii Replicon |
title | Centromere Binding and Evolution of Chromosomal Partition Systems in the Burkholderiales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centromere%20Binding%20and%20Evolution%20of%20Chromosomal%20Partition%20Systems%20in%20the%20Burkholderiales&rft.jtitle=Journal%20of%20Bacteriology&rft.au=Passot,%20Fanny%20M&rft.date=2012-07-01&rft.volume=194&rft.issue=13&rft.spage=3426&rft.epage=3436&rft.pages=3426-3436&rft.issn=0021-9193&rft.eissn=1098-5530&rft.coden=JOBAAY&rft_id=info:doi/10.1128/JB.00041-12&rft_dat=%3Cproquest_hal_p%3E1020190489%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021354569&rft_id=info:pmid/22522899&rfr_iscdi=true |