Strength and failure of cemented granular matter

Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2007-08, Vol.23 (4), p.413-429
Hauptverfasser: TOPIN, V, DELENNE, J.-Y, RADJAÏ, F, BRENDEL, L, MABILLE, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 429
container_issue 4
container_start_page 413
container_title The European physical journal. E, Soft matter and biological physics
container_volume 23
creator TOPIN, V
DELENNE, J.-Y
RADJAÏ, F
BRENDEL, L
MABILLE, F
description Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.
doi_str_mv 10.1140/epje/i2007-10201-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00759645v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68271302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4efe0054a170c65c3f5b8e73ae84886aadd2b8030c54eac26c22c79ab9431633</originalsourceid><addsrcrecordid>eNpFkMtKA0EQRRtRTIz-gAuZjYKLMdWPefQyBDVCwIVZuGsqPTXJhHnE7hnBv3fyIFlVUZx7oQ5j9xxeOFcwpu2GxoUASEIOAnioL9iQCy3CVEffl6dd8QG78X4DAH1MXrMBTxKR6kQPGXy1jupVuw6wzoIci7JzFDR5YKmiuqUsWDmsuxJdUGHbkrtlVzmWnu6Oc8QWb6-L6Sycf75_TCfz0Mo4akNFOQFECnkCNo6szKNlSolESlWaxohZJpYpSLCRIrQitkLYRONSK8ljKUfs-VC7xtJsXVGh-zMNFmY2mZvdrf860rGKfnnPPh3YrWt-OvKtqQpvqSyxpqbzJk5FwiWIHhQH0LrGe0f5qZmD2Sk1O6Vmr9TslRrdhx6O7d2youwcOTrsgccjgN5imfe-bOHPnOYClFTyH7rsfhE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68271302</pqid></control><display><type>article</type><title>Strength and failure of cemented granular matter</title><source>SpringerLink</source><creator>TOPIN, V ; DELENNE, J.-Y ; RADJAÏ, F ; BRENDEL, L ; MABILLE, F</creator><creatorcontrib>TOPIN, V ; DELENNE, J.-Y ; RADJAÏ, F ; BRENDEL, L ; MABILLE, F</creatorcontrib><description>Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2007-10201-9</identifier><identifier>PMID: 17728979</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mechanics ; Mechanics of materials ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2007-08, Vol.23 (4), p.413-429</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-4efe0054a170c65c3f5b8e73ae84886aadd2b8030c54eac26c22c79ab9431633</citedby><cites>FETCH-LOGICAL-c365t-4efe0054a170c65c3f5b8e73ae84886aadd2b8030c54eac26c22c79ab9431633</cites><orcidid>0000-0003-1376-7705 ; 0000-0002-4107-0502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19120434$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17728979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00759645$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>TOPIN, V</creatorcontrib><creatorcontrib>DELENNE, J.-Y</creatorcontrib><creatorcontrib>RADJAÏ, F</creatorcontrib><creatorcontrib>BRENDEL, L</creatorcontrib><creatorcontrib>MABILLE, F</creatorcontrib><title>Strength and failure of cemented granular matter</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur Phys J E Soft Matter</addtitle><description>Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKA0EQRRtRTIz-gAuZjYKLMdWPefQyBDVCwIVZuGsqPTXJhHnE7hnBv3fyIFlVUZx7oQ5j9xxeOFcwpu2GxoUASEIOAnioL9iQCy3CVEffl6dd8QG78X4DAH1MXrMBTxKR6kQPGXy1jupVuw6wzoIci7JzFDR5YKmiuqUsWDmsuxJdUGHbkrtlVzmWnu6Oc8QWb6-L6Sycf75_TCfz0Mo4akNFOQFECnkCNo6szKNlSolESlWaxohZJpYpSLCRIrQitkLYRONSK8ljKUfs-VC7xtJsXVGh-zMNFmY2mZvdrf860rGKfnnPPh3YrWt-OvKtqQpvqSyxpqbzJk5FwiWIHhQH0LrGe0f5qZmD2Sk1O6Vmr9TslRrdhx6O7d2youwcOTrsgccjgN5imfe-bOHPnOYClFTyH7rsfhE</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>TOPIN, V</creator><creator>DELENNE, J.-Y</creator><creator>RADJAÏ, F</creator><creator>BRENDEL, L</creator><creator>MABILLE, F</creator><general>Springer</general><general>EDP Sciences: EPJ</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1376-7705</orcidid><orcidid>https://orcid.org/0000-0002-4107-0502</orcidid></search><sort><creationdate>20070801</creationdate><title>Strength and failure of cemented granular matter</title><author>TOPIN, V ; DELENNE, J.-Y ; RADJAÏ, F ; BRENDEL, L ; MABILLE, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4efe0054a170c65c3f5b8e73ae84886aadd2b8030c54eac26c22c79ab9431633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TOPIN, V</creatorcontrib><creatorcontrib>DELENNE, J.-Y</creatorcontrib><creatorcontrib>RADJAÏ, F</creatorcontrib><creatorcontrib>BRENDEL, L</creatorcontrib><creatorcontrib>MABILLE, F</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOPIN, V</au><au>DELENNE, J.-Y</au><au>RADJAÏ, F</au><au>BRENDEL, L</au><au>MABILLE, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength and failure of cemented granular matter</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>23</volume><issue>4</issue><spage>413</spage><epage>429</epage><pages>413-429</pages><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>17728979</pmid><doi>10.1140/epje/i2007-10201-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1376-7705</orcidid><orcidid>https://orcid.org/0000-0002-4107-0502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2007-08, Vol.23 (4), p.413-429
issn 1292-8941
1292-895X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00759645v1
source SpringerLink
subjects Engineering Sciences
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Mechanics
Mechanics of materials
Physics
Solid mechanics
Structural and continuum mechanics
title Strength and failure of cemented granular matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20and%20failure%20of%20cemented%20granular%20matter&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=TOPIN,%20V&rft.date=2007-08-01&rft.volume=23&rft.issue=4&rft.spage=413&rft.epage=429&rft.pages=413-429&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2007-10201-9&rft_dat=%3Cproquest_hal_p%3E68271302%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68271302&rft_id=info:pmid/17728979&rfr_iscdi=true