Analysis of sheet metal formability through isotropic and kinematic hardening models

The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, A, Solids A, Solids, 2011-07, Vol.30 (4), p.532-546
Hauptverfasser: Butuc, Marilena C., Teodosiu, Cristian, Barlat, Frédéric, Gracio, José J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 4
container_start_page 532
container_title European journal of mechanics, A, Solids
container_volume 30
creator Butuc, Marilena C.
Teodosiu, Cristian
Barlat, Frédéric
Gracio, José J.
description The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed. ► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction.
doi_str_mv 10.1016/j.euromechsol.2011.03.005
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00753961v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753811000398</els_id><sourcerecordid>1762124926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhhtRcFz9D_Eg6qHbyld_HIdhdYUBL-s5pNOV7YzpzphkFubfm2GWxZN4Kqp4qPeteqvqPYWGAm2_HBo8xbCgmVPwDQNKG-ANgHxRbWjf8bpjvXxZbWAYurqTvH9dvUnpAAAMGN1U99tV-3NyiQRL0oyYyYJZe2JDXPTovMtnkucYTg8zcSnkGI7OEL1O5JdbcdG5dLOOE65ufSBLmNCnt9Urq33Cd0_1pvr59fZ-d1fvf3z7vtvuayOB5pqzdgJpuGVaDhbGCTUXPbOmHZmdpBBYPBZSQF_sWhBG2FZLMwouNR0Nv6k-X_fO2qtjdIuOZxW0U3fbvbrMAMrJQ0sfaWE_XtljDL9PmLJaXDLovV4xnJLq-4EPDAZZyE__JGnXMsrEwNqCDlfUxJBSRPvsgoK65KMO6q981CUfBbz4ush8eJLRyWhvo16NS88LmGBC9pIXbnflymPx0WFUyThcDU4uoslqCu4_1P4AnGesAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762124926</pqid></control><display><type>article</type><title>Analysis of sheet metal formability through isotropic and kinematic hardening models</title><source>Elsevier ScienceDirect Journals</source><creator>Butuc, Marilena C. ; Teodosiu, Cristian ; Barlat, Frédéric ; Gracio, José J.</creator><creatorcontrib>Butuc, Marilena C. ; Teodosiu, Cristian ; Barlat, Frédéric ; Gracio, José J.</creatorcontrib><description>The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed. ► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2011.03.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Masson SAS</publisher><subject>Anisotropic ; Anisotropy ; Applied sciences ; Constitutive laws ; Elasticity. Plasticity ; Engineering Sciences ; Exact sciences and technology ; Formability ; Forming ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Hardening ; Inelasticity (thermoplasticity, viscoplasticity...) ; Kinematic ; Kinematics ; Limit analysis ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanics ; Metals. Metallurgy ; Numerical methods ; Physics ; Press forming of metal foils and wires ; Production techniques ; Sheet metal ; Solid mechanics ; Steels ; Strain hardening ; Structural and continuum mechanics</subject><ispartof>European journal of mechanics, A, Solids, 2011-07, Vol.30 (4), p.532-546</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</citedby><cites>FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0997753811000398$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24245853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00753961$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Butuc, Marilena C.</creatorcontrib><creatorcontrib>Teodosiu, Cristian</creatorcontrib><creatorcontrib>Barlat, Frédéric</creatorcontrib><creatorcontrib>Gracio, José J.</creatorcontrib><title>Analysis of sheet metal formability through isotropic and kinematic hardening models</title><title>European journal of mechanics, A, Solids</title><description>The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed. ► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction.</description><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Constitutive laws</subject><subject>Elasticity. Plasticity</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Formability</subject><subject>Forming</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hardening</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Kinematic</subject><subject>Kinematics</subject><subject>Limit analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Press forming of metal foils and wires</subject><subject>Production techniques</subject><subject>Sheet metal</subject><subject>Solid mechanics</subject><subject>Steels</subject><subject>Strain hardening</subject><subject>Structural and continuum mechanics</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhhtRcFz9D_Eg6qHbyld_HIdhdYUBL-s5pNOV7YzpzphkFubfm2GWxZN4Kqp4qPeteqvqPYWGAm2_HBo8xbCgmVPwDQNKG-ANgHxRbWjf8bpjvXxZbWAYurqTvH9dvUnpAAAMGN1U99tV-3NyiQRL0oyYyYJZe2JDXPTovMtnkucYTg8zcSnkGI7OEL1O5JdbcdG5dLOOE65ufSBLmNCnt9Urq33Cd0_1pvr59fZ-d1fvf3z7vtvuayOB5pqzdgJpuGVaDhbGCTUXPbOmHZmdpBBYPBZSQF_sWhBG2FZLMwouNR0Nv6k-X_fO2qtjdIuOZxW0U3fbvbrMAMrJQ0sfaWE_XtljDL9PmLJaXDLovV4xnJLq-4EPDAZZyE__JGnXMsrEwNqCDlfUxJBSRPvsgoK65KMO6q981CUfBbz4ush8eJLRyWhvo16NS88LmGBC9pIXbnflymPx0WFUyThcDU4uoslqCu4_1P4AnGesAg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Butuc, Marilena C.</creator><creator>Teodosiu, Cristian</creator><creator>Barlat, Frédéric</creator><creator>Gracio, José J.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110701</creationdate><title>Analysis of sheet metal formability through isotropic and kinematic hardening models</title><author>Butuc, Marilena C. ; Teodosiu, Cristian ; Barlat, Frédéric ; Gracio, José J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Constitutive laws</topic><topic>Elasticity. Plasticity</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Formability</topic><topic>Forming</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hardening</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Kinematic</topic><topic>Kinematics</topic><topic>Limit analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Press forming of metal foils and wires</topic><topic>Production techniques</topic><topic>Sheet metal</topic><topic>Solid mechanics</topic><topic>Steels</topic><topic>Strain hardening</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butuc, Marilena C.</creatorcontrib><creatorcontrib>Teodosiu, Cristian</creatorcontrib><creatorcontrib>Barlat, Frédéric</creatorcontrib><creatorcontrib>Gracio, José J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butuc, Marilena C.</au><au>Teodosiu, Cristian</au><au>Barlat, Frédéric</au><au>Gracio, José J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of sheet metal formability through isotropic and kinematic hardening models</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>30</volume><issue>4</issue><spage>532</spage><epage>546</epage><pages>532-546</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed. ► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction.</abstract><cop>Amsterdam</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2011.03.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0997-7538
ispartof European journal of mechanics, A, Solids, 2011-07, Vol.30 (4), p.532-546
issn 0997-7538
1873-7285
language eng
recordid cdi_hal_primary_oai_HAL_hal_00753961v1
source Elsevier ScienceDirect Journals
subjects Anisotropic
Anisotropy
Applied sciences
Constitutive laws
Elasticity. Plasticity
Engineering Sciences
Exact sciences and technology
Formability
Forming
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Hardening
Inelasticity (thermoplasticity, viscoplasticity...)
Kinematic
Kinematics
Limit analysis
Mathematical models
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanics
Metals. Metallurgy
Numerical methods
Physics
Press forming of metal foils and wires
Production techniques
Sheet metal
Solid mechanics
Steels
Strain hardening
Structural and continuum mechanics
title Analysis of sheet metal formability through isotropic and kinematic hardening models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20sheet%20metal%20formability%20through%20isotropic%20and%20kinematic%20hardening%20models&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Butuc,%20Marilena%20C.&rft.date=2011-07-01&rft.volume=30&rft.issue=4&rft.spage=532&rft.epage=546&rft.pages=532-546&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2011.03.005&rft_dat=%3Cproquest_hal_p%3E1762124926%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762124926&rft_id=info:pmid/&rft_els_id=S0997753811000398&rfr_iscdi=true