Analysis of sheet metal formability through isotropic and kinematic hardening models
The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the micr...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2011-07, Vol.30 (4), p.532-546 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | 4 |
container_start_page | 532 |
container_title | European journal of mechanics, A, Solids |
container_volume | 30 |
creator | Butuc, Marilena C. Teodosiu, Cristian Barlat, Frédéric Gracio, José J. |
description | The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed.
► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction. |
doi_str_mv | 10.1016/j.euromechsol.2011.03.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00753961v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753811000398</els_id><sourcerecordid>1762124926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhhtRcFz9D_Eg6qHbyld_HIdhdYUBL-s5pNOV7YzpzphkFubfm2GWxZN4Kqp4qPeteqvqPYWGAm2_HBo8xbCgmVPwDQNKG-ANgHxRbWjf8bpjvXxZbWAYurqTvH9dvUnpAAAMGN1U99tV-3NyiQRL0oyYyYJZe2JDXPTovMtnkucYTg8zcSnkGI7OEL1O5JdbcdG5dLOOE65ufSBLmNCnt9Urq33Cd0_1pvr59fZ-d1fvf3z7vtvuayOB5pqzdgJpuGVaDhbGCTUXPbOmHZmdpBBYPBZSQF_sWhBG2FZLMwouNR0Nv6k-X_fO2qtjdIuOZxW0U3fbvbrMAMrJQ0sfaWE_XtljDL9PmLJaXDLovV4xnJLq-4EPDAZZyE__JGnXMsrEwNqCDlfUxJBSRPvsgoK65KMO6q981CUfBbz4ush8eJLRyWhvo16NS88LmGBC9pIXbnflymPx0WFUyThcDU4uoslqCu4_1P4AnGesAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762124926</pqid></control><display><type>article</type><title>Analysis of sheet metal formability through isotropic and kinematic hardening models</title><source>Elsevier ScienceDirect Journals</source><creator>Butuc, Marilena C. ; Teodosiu, Cristian ; Barlat, Frédéric ; Gracio, José J.</creator><creatorcontrib>Butuc, Marilena C. ; Teodosiu, Cristian ; Barlat, Frédéric ; Gracio, José J.</creatorcontrib><description>The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed.
► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2011.03.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Masson SAS</publisher><subject>Anisotropic ; Anisotropy ; Applied sciences ; Constitutive laws ; Elasticity. Plasticity ; Engineering Sciences ; Exact sciences and technology ; Formability ; Forming ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Hardening ; Inelasticity (thermoplasticity, viscoplasticity...) ; Kinematic ; Kinematics ; Limit analysis ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanics ; Metals. Metallurgy ; Numerical methods ; Physics ; Press forming of metal foils and wires ; Production techniques ; Sheet metal ; Solid mechanics ; Steels ; Strain hardening ; Structural and continuum mechanics</subject><ispartof>European journal of mechanics, A, Solids, 2011-07, Vol.30 (4), p.532-546</ispartof><rights>2011 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</citedby><cites>FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0997753811000398$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24245853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00753961$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Butuc, Marilena C.</creatorcontrib><creatorcontrib>Teodosiu, Cristian</creatorcontrib><creatorcontrib>Barlat, Frédéric</creatorcontrib><creatorcontrib>Gracio, José J.</creatorcontrib><title>Analysis of sheet metal formability through isotropic and kinematic hardening models</title><title>European journal of mechanics, A, Solids</title><description>The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed.
► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction.</description><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Constitutive laws</subject><subject>Elasticity. Plasticity</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Formability</subject><subject>Forming</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hardening</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Kinematic</subject><subject>Kinematics</subject><subject>Limit analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Press forming of metal foils and wires</subject><subject>Production techniques</subject><subject>Sheet metal</subject><subject>Solid mechanics</subject><subject>Steels</subject><subject>Strain hardening</subject><subject>Structural and continuum mechanics</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhhtRcFz9D_Eg6qHbyld_HIdhdYUBL-s5pNOV7YzpzphkFubfm2GWxZN4Kqp4qPeteqvqPYWGAm2_HBo8xbCgmVPwDQNKG-ANgHxRbWjf8bpjvXxZbWAYurqTvH9dvUnpAAAMGN1U99tV-3NyiQRL0oyYyYJZe2JDXPTovMtnkucYTg8zcSnkGI7OEL1O5JdbcdG5dLOOE65ufSBLmNCnt9Urq33Cd0_1pvr59fZ-d1fvf3z7vtvuayOB5pqzdgJpuGVaDhbGCTUXPbOmHZmdpBBYPBZSQF_sWhBG2FZLMwouNR0Nv6k-X_fO2qtjdIuOZxW0U3fbvbrMAMrJQ0sfaWE_XtljDL9PmLJaXDLovV4xnJLq-4EPDAZZyE__JGnXMsrEwNqCDlfUxJBSRPvsgoK65KMO6q981CUfBbz4ush8eJLRyWhvo16NS88LmGBC9pIXbnflymPx0WFUyThcDU4uoslqCu4_1P4AnGesAg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Butuc, Marilena C.</creator><creator>Teodosiu, Cristian</creator><creator>Barlat, Frédéric</creator><creator>Gracio, José J.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110701</creationdate><title>Analysis of sheet metal formability through isotropic and kinematic hardening models</title><author>Butuc, Marilena C. ; Teodosiu, Cristian ; Barlat, Frédéric ; Gracio, José J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-326d05c3f2a59f0bdea3482fc6b2fd544e202501408002f04c4f6a5cb435a1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Constitutive laws</topic><topic>Elasticity. Plasticity</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Formability</topic><topic>Forming</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hardening</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Kinematic</topic><topic>Kinematics</topic><topic>Limit analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Press forming of metal foils and wires</topic><topic>Production techniques</topic><topic>Sheet metal</topic><topic>Solid mechanics</topic><topic>Steels</topic><topic>Strain hardening</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butuc, Marilena C.</creatorcontrib><creatorcontrib>Teodosiu, Cristian</creatorcontrib><creatorcontrib>Barlat, Frédéric</creatorcontrib><creatorcontrib>Gracio, José J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butuc, Marilena C.</au><au>Teodosiu, Cristian</au><au>Barlat, Frédéric</au><au>Gracio, José J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of sheet metal formability through isotropic and kinematic hardening models</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>30</volume><issue>4</issue><spage>532</spage><epage>546</epage><pages>532-546</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>The present paper aims at analysing the sheet metal formability through several isotropic and kinematic hardening models. Specifically, a special attention is paid to the physically-based hardening model of Teodosiu and Hu (1995), which accounts for the anisotropic work-hardening induced by the microstructural evolution at large strains, as well as to some more conventional hardening models, including the isotropic Swift strain-hardening power law, and the Voce saturation strain-hardening law, combined with a non-linear kinematic hardening described by the Armstrong–Frederick law. The onset of localized necking is simulated by an advanced sheet metal forming limit model which connects, through the Marciniak–Kuczinsky analysis, the hardening models with the anisotropic yield criterion Yld2000-2d (Barlat et al., 2003). Both linear and complex strain paths are taken into account. The selected material is a DC06 steel sheet. The validity of each model is assessed by comparing the predicted forming limits with experimental results carefully obtained on this steel. The origin of discrepancy in the predicted results using different hardening models is thoroughly analyzed.
► An advanced model is used to predict the forming limits for DC06 steel sheet. ► Several isotropic and non-linear kinematic hardening models are selected. ► Microstructural hardening model reproduces correctly the experimental results. ► Geometrical instabilities influence the plastic instability under complex loadings. ►The type of hardening model influences the back stress effect on the FLDs prediction.</abstract><cop>Amsterdam</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2011.03.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7538 |
ispartof | European journal of mechanics, A, Solids, 2011-07, Vol.30 (4), p.532-546 |
issn | 0997-7538 1873-7285 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00753961v1 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropic Anisotropy Applied sciences Constitutive laws Elasticity. Plasticity Engineering Sciences Exact sciences and technology Formability Forming Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Hardening Inelasticity (thermoplasticity, viscoplasticity...) Kinematic Kinematics Limit analysis Mathematical models Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanics Metals. Metallurgy Numerical methods Physics Press forming of metal foils and wires Production techniques Sheet metal Solid mechanics Steels Strain hardening Structural and continuum mechanics |
title | Analysis of sheet metal formability through isotropic and kinematic hardening models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20sheet%20metal%20formability%20through%20isotropic%20and%20kinematic%20hardening%20models&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Butuc,%20Marilena%20C.&rft.date=2011-07-01&rft.volume=30&rft.issue=4&rft.spage=532&rft.epage=546&rft.pages=532-546&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2011.03.005&rft_dat=%3Cproquest_hal_p%3E1762124926%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762124926&rft_id=info:pmid/&rft_els_id=S0997753811000398&rfr_iscdi=true |