A modified phase field approximation for mean curvature flow with conservation of the volume

This paper is concerned with the motion of a time‐dependent hypersurface ∂Ω(t) in ℝd that evolves with a normal velocity where κ is the mean curvature of ∂Ω(t), and g is an external forcing term. Phase field approximation of this motion leads to the Allen–Cahn equation where ε is an approximation pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2011-07, Vol.34 (10), p.1157-1180
Hauptverfasser: Brassel, M., Bretin, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1180
container_issue 10
container_start_page 1157
container_title Mathematical methods in the applied sciences
container_volume 34
creator Brassel, M.
Bretin, E.
description This paper is concerned with the motion of a time‐dependent hypersurface ∂Ω(t) in ℝd that evolves with a normal velocity where κ is the mean curvature of ∂Ω(t), and g is an external forcing term. Phase field approximation of this motion leads to the Allen–Cahn equation where ε is an approximation parameter, W a double well potential and cW a constant that depends only on W. We study here a modified version of this equation and we prove its convergence to the same geometric motion. We then make use of this modified equation in the context of mean curvature flow with conservation of the volume, and we show that it has better volume‐preserving properties than the traditional nonlocal Allen–Cahn equation. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.1426
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00749638v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671437569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4336-a0e5d98946f833e4407fe286cb1ab3573ee27e1612ca1d13003f5e8e7ef637b63</originalsourceid><addsrcrecordid>eNqF0cuKFDEUBuAgCrbjgI-QjaCLGnOrpGrZjnMRerzAiBshpFMndDRVaZOq7pm3N0U3jRtxlXD4-DmHH6FXlFxQQti7vjcXVDD5BC0oaduKCiWfogWhilSCUfEcvcj5JyGkoZQt0I8l7mPnnYcObzcmAy7f0GGz3ab44Hsz-jhgFxPuwQzYTmlnxikVFuIe7_24wTYOGebxLKPD4wbwLoaph5fomTMhw_nxPUPfrq_uL2-r1eebj5fLVWUF57IyBOqubVohXcM5CEGUA9ZIu6ZmzWvFAZgCKimzhnaUE8JdDQ0ocJKrteRn6O0hd2OC3qaydXrU0Xh9u1zpeUaIEq3kzY4V--Zgy32_J8ij7n22EIIZIE5ZU6mo4KqW7f8p4ZQ1SpG_qE0x5wTutAYleu5Fl1703Euhr4-pJlsTXDKD9fnkWSmJNfXsqoPb-wCP_8zTd3fLY-7R-zzCw8mb9EtLVQ7S3z_d6A9cfn3_hbWa8T-pxqjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031287709</pqid></control><display><type>article</type><title>A modified phase field approximation for mean curvature flow with conservation of the volume</title><source>Access via Wiley Online Library</source><creator>Brassel, M. ; Bretin, E.</creator><creatorcontrib>Brassel, M. ; Bretin, E.</creatorcontrib><description>This paper is concerned with the motion of a time‐dependent hypersurface ∂Ω(t) in ℝd that evolves with a normal velocity where κ is the mean curvature of ∂Ω(t), and g is an external forcing term. Phase field approximation of this motion leads to the Allen–Cahn equation where ε is an approximation parameter, W a double well potential and cW a constant that depends only on W. We study here a modified version of this equation and we prove its convergence to the same geometric motion. We then make use of this modified equation in the context of mean curvature flow with conservation of the volume, and we show that it has better volume‐preserving properties than the traditional nonlocal Allen–Cahn equation. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>ISSN: 1099-1476</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.1426</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algebra ; Algebraic geometry ; Allen-Cahn equation ; Approximation ; asymptotic analysis ; Conservation ; Convergence ; Curvature ; Differential geometry ; Exact sciences and technology ; Geometry ; Mathematical analysis ; Mathematics ; mean curvature flow ; Numerical Analysis ; Sciences and techniques of general use ; volume conservation</subject><ispartof>Mathematical methods in the applied sciences, 2011-07, Vol.34 (10), p.1157-1180</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4336-a0e5d98946f833e4407fe286cb1ab3573ee27e1612ca1d13003f5e8e7ef637b63</citedby><cites>FETCH-LOGICAL-c4336-a0e5d98946f833e4407fe286cb1ab3573ee27e1612ca1d13003f5e8e7ef637b63</cites><orcidid>0000-0003-1319-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.1426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.1426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24212856$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00749638$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brassel, M.</creatorcontrib><creatorcontrib>Bretin, E.</creatorcontrib><title>A modified phase field approximation for mean curvature flow with conservation of the volume</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>This paper is concerned with the motion of a time‐dependent hypersurface ∂Ω(t) in ℝd that evolves with a normal velocity where κ is the mean curvature of ∂Ω(t), and g is an external forcing term. Phase field approximation of this motion leads to the Allen–Cahn equation where ε is an approximation parameter, W a double well potential and cW a constant that depends only on W. We study here a modified version of this equation and we prove its convergence to the same geometric motion. We then make use of this modified equation in the context of mean curvature flow with conservation of the volume, and we show that it has better volume‐preserving properties than the traditional nonlocal Allen–Cahn equation. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Allen-Cahn equation</subject><subject>Approximation</subject><subject>asymptotic analysis</subject><subject>Conservation</subject><subject>Convergence</subject><subject>Curvature</subject><subject>Differential geometry</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>mean curvature flow</subject><subject>Numerical Analysis</subject><subject>Sciences and techniques of general use</subject><subject>volume conservation</subject><issn>0170-4214</issn><issn>1099-1476</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0cuKFDEUBuAgCrbjgI-QjaCLGnOrpGrZjnMRerzAiBshpFMndDRVaZOq7pm3N0U3jRtxlXD4-DmHH6FXlFxQQti7vjcXVDD5BC0oaduKCiWfogWhilSCUfEcvcj5JyGkoZQt0I8l7mPnnYcObzcmAy7f0GGz3ab44Hsz-jhgFxPuwQzYTmlnxikVFuIe7_24wTYOGebxLKPD4wbwLoaph5fomTMhw_nxPUPfrq_uL2-r1eebj5fLVWUF57IyBOqubVohXcM5CEGUA9ZIu6ZmzWvFAZgCKimzhnaUE8JdDQ0ocJKrteRn6O0hd2OC3qaydXrU0Xh9u1zpeUaIEq3kzY4V--Zgy32_J8ij7n22EIIZIE5ZU6mo4KqW7f8p4ZQ1SpG_qE0x5wTutAYleu5Fl1703Euhr4-pJlsTXDKD9fnkWSmJNfXsqoPb-wCP_8zTd3fLY-7R-zzCw8mb9EtLVQ7S3z_d6A9cfn3_hbWa8T-pxqjw</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Brassel, M.</creator><creator>Bretin, E.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></search><sort><creationdate>20110715</creationdate><title>A modified phase field approximation for mean curvature flow with conservation of the volume</title><author>Brassel, M. ; Bretin, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4336-a0e5d98946f833e4407fe286cb1ab3573ee27e1612ca1d13003f5e8e7ef637b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Allen-Cahn equation</topic><topic>Approximation</topic><topic>asymptotic analysis</topic><topic>Conservation</topic><topic>Convergence</topic><topic>Curvature</topic><topic>Differential geometry</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>mean curvature flow</topic><topic>Numerical Analysis</topic><topic>Sciences and techniques of general use</topic><topic>volume conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brassel, M.</creatorcontrib><creatorcontrib>Bretin, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brassel, M.</au><au>Bretin, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified phase field approximation for mean curvature flow with conservation of the volume</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2011-07-15</date><risdate>2011</risdate><volume>34</volume><issue>10</issue><spage>1157</spage><epage>1180</epage><pages>1157-1180</pages><issn>0170-4214</issn><issn>1099-1476</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>This paper is concerned with the motion of a time‐dependent hypersurface ∂Ω(t) in ℝd that evolves with a normal velocity where κ is the mean curvature of ∂Ω(t), and g is an external forcing term. Phase field approximation of this motion leads to the Allen–Cahn equation where ε is an approximation parameter, W a double well potential and cW a constant that depends only on W. We study here a modified version of this equation and we prove its convergence to the same geometric motion. We then make use of this modified equation in the context of mean curvature flow with conservation of the volume, and we show that it has better volume‐preserving properties than the traditional nonlocal Allen–Cahn equation. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.1426</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2011-07, Vol.34 (10), p.1157-1180
issn 0170-4214
1099-1476
1099-1476
language eng
recordid cdi_hal_primary_oai_HAL_hal_00749638v2
source Access via Wiley Online Library
subjects Algebra
Algebraic geometry
Allen-Cahn equation
Approximation
asymptotic analysis
Conservation
Convergence
Curvature
Differential geometry
Exact sciences and technology
Geometry
Mathematical analysis
Mathematics
mean curvature flow
Numerical Analysis
Sciences and techniques of general use
volume conservation
title A modified phase field approximation for mean curvature flow with conservation of the volume
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20phase%20field%20approximation%20for%20mean%20curvature%20flow%20with%20conservation%20of%20the%20volume&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Brassel,%20M.&rft.date=2011-07-15&rft.volume=34&rft.issue=10&rft.spage=1157&rft.epage=1180&rft.pages=1157-1180&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.1426&rft_dat=%3Cproquest_hal_p%3E1671437569%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031287709&rft_id=info:pmid/&rfr_iscdi=true