On the Müller paradox for thermal-incompressible media
In his monograph Thermodynamics , I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and t...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2012-11, Vol.24 (4-6), p.505-513 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 513 |
---|---|
container_issue | 4-6 |
container_start_page | 505 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 24 |
creator | Gouin, H. Muracchini, A. Ruggeri, T. |
description | In his monograph
Thermodynamics
, I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of
quasi-thermal-incompressible
body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition. |
doi_str_mv | 10.1007/s00161-011-0201-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00748817v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809396521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_RmWzSTY6lqBUqveg5ZHdn7Zb9U5Mq-t28-cXMsiJePAwDj997zDzGzhGuECC7DgA4Qw4YRwByPGATlKngYJQ5ZBMwqeKImTpmJyFsIXqMSicsW3fJfkPJw9dn05BPds67sn9Pqt4Pum9dw-uu6NudpxDqvKGkpbJ2p-yock2gs589ZU-3N4-LJV-t7-4X8xUvUgV7PgORG1dISqVCLISoSkqNJqOlkK6UkkiqXOdK6Zyc0KmuMsKIFwVgmYt0yi7H3I1r7M7XrfMftne1Xc5XdtDiI1JrzN4wshcju_P9yyuFvd32r76L51lECZgZA7NI4UgVvg_BU_Ubi2CHLu3YpY1d2qFLOySL0RMi2z2T_5P8r-kbIY91Fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1140179906</pqid></control><display><type>article</type><title>On the Müller paradox for thermal-incompressible media</title><source>SpringerLink Journals</source><creator>Gouin, H. ; Muracchini, A. ; Ruggeri, T.</creator><creatorcontrib>Gouin, H. ; Muracchini, A. ; Ruggeri, T.</creatorcontrib><description>In his monograph
Thermodynamics
, I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of
quasi-thermal-incompressible
body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-011-0201-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Continuum Physics ; Engineering Sciences ; Engineering Thermodynamics ; Entropy ; Fluid dynamics ; Fluid mechanics ; Fluids mechanics ; Heat and Mass Transfer ; Hydrodynamics ; Materials science ; Mechanics ; Original Article ; Physics ; Physics and Astronomy ; Solid mechanics ; Structural Materials ; Theoretical and Applied Mechanics ; Thermics ; Thermodynamics</subject><ispartof>Continuum mechanics and thermodynamics, 2012-11, Vol.24 (4-6), p.505-513</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</citedby><cites>FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</cites><orcidid>0000-0003-4088-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-011-0201-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-011-0201-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00748817$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouin, H.</creatorcontrib><creatorcontrib>Muracchini, A.</creatorcontrib><creatorcontrib>Ruggeri, T.</creatorcontrib><title>On the Müller paradox for thermal-incompressible media</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In his monograph
Thermodynamics
, I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of
quasi-thermal-incompressible
body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.</description><subject>Classical and Continuum Physics</subject><subject>Engineering Sciences</subject><subject>Engineering Thermodynamics</subject><subject>Entropy</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Heat and Mass Transfer</subject><subject>Hydrodynamics</subject><subject>Materials science</subject><subject>Mechanics</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid mechanics</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermics</subject><subject>Thermodynamics</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_RmWzSTY6lqBUqveg5ZHdn7Zb9U5Mq-t28-cXMsiJePAwDj997zDzGzhGuECC7DgA4Qw4YRwByPGATlKngYJQ5ZBMwqeKImTpmJyFsIXqMSicsW3fJfkPJw9dn05BPds67sn9Pqt4Pum9dw-uu6NudpxDqvKGkpbJ2p-yock2gs589ZU-3N4-LJV-t7-4X8xUvUgV7PgORG1dISqVCLISoSkqNJqOlkK6UkkiqXOdK6Zyc0KmuMsKIFwVgmYt0yi7H3I1r7M7XrfMftne1Xc5XdtDiI1JrzN4wshcju_P9yyuFvd32r76L51lECZgZA7NI4UgVvg_BU_Ubi2CHLu3YpY1d2qFLOySL0RMi2z2T_5P8r-kbIY91Fg</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Gouin, H.</creator><creator>Muracchini, A.</creator><creator>Ruggeri, T.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid></search><sort><creationdate>20121101</creationdate><title>On the Müller paradox for thermal-incompressible media</title><author>Gouin, H. ; Muracchini, A. ; Ruggeri, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical and Continuum Physics</topic><topic>Engineering Sciences</topic><topic>Engineering Thermodynamics</topic><topic>Entropy</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Heat and Mass Transfer</topic><topic>Hydrodynamics</topic><topic>Materials science</topic><topic>Mechanics</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid mechanics</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouin, H.</creatorcontrib><creatorcontrib>Muracchini, A.</creatorcontrib><creatorcontrib>Ruggeri, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouin, H.</au><au>Muracchini, A.</au><au>Ruggeri, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Müller paradox for thermal-incompressible media</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>24</volume><issue>4-6</issue><spage>505</spage><epage>513</epage><pages>505-513</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In his monograph
Thermodynamics
, I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of
quasi-thermal-incompressible
body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00161-011-0201-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2012-11, Vol.24 (4-6), p.505-513 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00748817v1 |
source | SpringerLink Journals |
subjects | Classical and Continuum Physics Engineering Sciences Engineering Thermodynamics Entropy Fluid dynamics Fluid mechanics Fluids mechanics Heat and Mass Transfer Hydrodynamics Materials science Mechanics Original Article Physics Physics and Astronomy Solid mechanics Structural Materials Theoretical and Applied Mechanics Thermics Thermodynamics |
title | On the Müller paradox for thermal-incompressible media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20M%C3%BCller%20paradox%20for%20thermal-incompressible%20media&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Gouin,%20H.&rft.date=2012-11-01&rft.volume=24&rft.issue=4-6&rft.spage=505&rft.epage=513&rft.pages=505-513&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-011-0201-1&rft_dat=%3Cproquest_hal_p%3E2809396521%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1140179906&rft_id=info:pmid/&rfr_iscdi=true |