On the Müller paradox for thermal-incompressible media

In his monograph Thermodynamics , I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2012-11, Vol.24 (4-6), p.505-513
Hauptverfasser: Gouin, H., Muracchini, A., Ruggeri, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue 4-6
container_start_page 505
container_title Continuum mechanics and thermodynamics
container_volume 24
creator Gouin, H.
Muracchini, A.
Ruggeri, T.
description In his monograph Thermodynamics , I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of quasi-thermal-incompressible body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.
doi_str_mv 10.1007/s00161-011-0201-1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00748817v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809396521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_RmWzSTY6lqBUqveg5ZHdn7Zb9U5Mq-t28-cXMsiJePAwDj997zDzGzhGuECC7DgA4Qw4YRwByPGATlKngYJQ5ZBMwqeKImTpmJyFsIXqMSicsW3fJfkPJw9dn05BPds67sn9Pqt4Pum9dw-uu6NudpxDqvKGkpbJ2p-yock2gs589ZU-3N4-LJV-t7-4X8xUvUgV7PgORG1dISqVCLISoSkqNJqOlkK6UkkiqXOdK6Zyc0KmuMsKIFwVgmYt0yi7H3I1r7M7XrfMftne1Xc5XdtDiI1JrzN4wshcju_P9yyuFvd32r76L51lECZgZA7NI4UgVvg_BU_Ubi2CHLu3YpY1d2qFLOySL0RMi2z2T_5P8r-kbIY91Fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1140179906</pqid></control><display><type>article</type><title>On the Müller paradox for thermal-incompressible media</title><source>SpringerLink Journals</source><creator>Gouin, H. ; Muracchini, A. ; Ruggeri, T.</creator><creatorcontrib>Gouin, H. ; Muracchini, A. ; Ruggeri, T.</creatorcontrib><description>In his monograph Thermodynamics , I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of quasi-thermal-incompressible body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-011-0201-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Continuum Physics ; Engineering Sciences ; Engineering Thermodynamics ; Entropy ; Fluid dynamics ; Fluid mechanics ; Fluids mechanics ; Heat and Mass Transfer ; Hydrodynamics ; Materials science ; Mechanics ; Original Article ; Physics ; Physics and Astronomy ; Solid mechanics ; Structural Materials ; Theoretical and Applied Mechanics ; Thermics ; Thermodynamics</subject><ispartof>Continuum mechanics and thermodynamics, 2012-11, Vol.24 (4-6), p.505-513</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</citedby><cites>FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</cites><orcidid>0000-0003-4088-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-011-0201-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-011-0201-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00748817$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouin, H.</creatorcontrib><creatorcontrib>Muracchini, A.</creatorcontrib><creatorcontrib>Ruggeri, T.</creatorcontrib><title>On the Müller paradox for thermal-incompressible media</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In his monograph Thermodynamics , I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of quasi-thermal-incompressible body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.</description><subject>Classical and Continuum Physics</subject><subject>Engineering Sciences</subject><subject>Engineering Thermodynamics</subject><subject>Entropy</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Heat and Mass Transfer</subject><subject>Hydrodynamics</subject><subject>Materials science</subject><subject>Mechanics</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid mechanics</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermics</subject><subject>Thermodynamics</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_RmWzSTY6lqBUqveg5ZHdn7Zb9U5Mq-t28-cXMsiJePAwDj997zDzGzhGuECC7DgA4Qw4YRwByPGATlKngYJQ5ZBMwqeKImTpmJyFsIXqMSicsW3fJfkPJw9dn05BPds67sn9Pqt4Pum9dw-uu6NudpxDqvKGkpbJ2p-yock2gs589ZU-3N4-LJV-t7-4X8xUvUgV7PgORG1dISqVCLISoSkqNJqOlkK6UkkiqXOdK6Zyc0KmuMsKIFwVgmYt0yi7H3I1r7M7XrfMftne1Xc5XdtDiI1JrzN4wshcju_P9yyuFvd32r76L51lECZgZA7NI4UgVvg_BU_Ubi2CHLu3YpY1d2qFLOySL0RMi2z2T_5P8r-kbIY91Fg</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Gouin, H.</creator><creator>Muracchini, A.</creator><creator>Ruggeri, T.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid></search><sort><creationdate>20121101</creationdate><title>On the Müller paradox for thermal-incompressible media</title><author>Gouin, H. ; Muracchini, A. ; Ruggeri, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-602b9ac4e34511c22fde398e98424ad44ee45b8b558bea2838f7e14e3cc01db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical and Continuum Physics</topic><topic>Engineering Sciences</topic><topic>Engineering Thermodynamics</topic><topic>Entropy</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Heat and Mass Transfer</topic><topic>Hydrodynamics</topic><topic>Materials science</topic><topic>Mechanics</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid mechanics</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouin, H.</creatorcontrib><creatorcontrib>Muracchini, A.</creatorcontrib><creatorcontrib>Ruggeri, T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouin, H.</au><au>Muracchini, A.</au><au>Ruggeri, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Müller paradox for thermal-incompressible media</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>24</volume><issue>4-6</issue><spage>505</spage><epage>513</epage><pages>505-513</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In his monograph Thermodynamics , I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of quasi-thermal-incompressible body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00161-011-0201-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2012-11, Vol.24 (4-6), p.505-513
issn 0935-1175
1432-0959
language eng
recordid cdi_hal_primary_oai_HAL_hal_00748817v1
source SpringerLink Journals
subjects Classical and Continuum Physics
Engineering Sciences
Engineering Thermodynamics
Entropy
Fluid dynamics
Fluid mechanics
Fluids mechanics
Heat and Mass Transfer
Hydrodynamics
Materials science
Mechanics
Original Article
Physics
Physics and Astronomy
Solid mechanics
Structural Materials
Theoretical and Applied Mechanics
Thermics
Thermodynamics
title On the Müller paradox for thermal-incompressible media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20M%C3%BCller%20paradox%20for%20thermal-incompressible%20media&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Gouin,%20H.&rft.date=2012-11-01&rft.volume=24&rft.issue=4-6&rft.spage=505&rft.epage=513&rft.pages=505-513&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-011-0201-1&rft_dat=%3Cproquest_hal_p%3E2809396521%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1140179906&rft_id=info:pmid/&rfr_iscdi=true