Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices

Let H be a Hadamard Circulant matrix of order n=4h2 where h>1 is an odd positive integer with at least two prime divisors such that the exponents of the prime numbers that divide h are big enough and such that the nonzero coefficients of the cyclotomic polynomial Φn(t) are bounded by a constant i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2012-12, Vol.437 (12), p.2877-2886
Hauptverfasser: Euler, Reinhardt, Gallardo, Luis H., Rahavandrainy, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2886
container_issue 12
container_start_page 2877
container_title Linear algebra and its applications
container_volume 437
creator Euler, Reinhardt
Gallardo, Luis H.
Rahavandrainy, Olivier
description Let H be a Hadamard Circulant matrix of order n=4h2 where h>1 is an odd positive integer with at least two prime divisors such that the exponents of the prime numbers that divide h are big enough and such that the nonzero coefficients of the cyclotomic polynomial Φn(t) are bounded by a constant independent of n. Then for all the φ(n)n-th primitive roots w of 1, P(w)n is not an algebraic integer in the cyclotomic field K=Q(w), where P(t) is the representer polynomial of H and φ is the Euler function. This implies that P(w) is not a real number.
doi_str_mv 10.1016/j.laa.2012.07.022
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00748316v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379512005630</els_id><sourcerecordid>oai_HAL_hal_00748316v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b2ec7aa0f448f6a45e04482c4a3049de795a381abc3e35e99b2d3bc0ac1f2bb93</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLtuXLhoPbn0hqthUEcYEG_rcJommNJph6QdmLc3pTJLVwk__5ec8xFySyGhQLOHJmkREwaUJZAnwNgZWdAi5zEt0uycLACYiHleppfkyvsGAEQObEHeP0djrLK6GyLVd7UdbN_5yPQuwilotBpGp6PeRB9Hr0Na9eMQbbDGHbo6WlunxhYDvcPBWaX9Nbkw2Hp983cuyffz09d6E2_fXl7Xq22sBIghrphWOSIYIQqToUg1hBtTAjmIstZhVOQFxUpxzVNdlhWreaUAFTWsqkq-JPfzuz_Yyr2zYZyj7NHKzWorpwwgFwWn2YGGLp27yvXeO21OAAU5-ZONDP7k5E9CLoO_wNzNzB69wtY47JT1J5BlvEwzKELvce7psOzBaif9pFPp2rogT9a9_eeXX9J8hWk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Euler, Reinhardt ; Gallardo, Luis H. ; Rahavandrainy, Olivier</creator><creatorcontrib>Euler, Reinhardt ; Gallardo, Luis H. ; Rahavandrainy, Olivier</creatorcontrib><description>Let H be a Hadamard Circulant matrix of order n=4h2 where h&gt;1 is an odd positive integer with at least two prime divisors such that the exponents of the prime numbers that divide h are big enough and such that the nonzero coefficients of the cyclotomic polynomial Φn(t) are bounded by a constant independent of n. Then for all the φ(n)n-th primitive roots w of 1, P(w)n is not an algebraic integer in the cyclotomic field K=Q(w), where P(t) is the representer polynomial of H and φ is the Euler function. This implies that P(w) is not a real number.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2012.07.022</identifier><identifier>CODEN: LAAPAW</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Circulant matrices ; Computer Science ; Cyclotomic polynomials ; Discrete Mathematics ; Exact sciences and technology ; Hadamard matrices ; Kronecker’s theorem ; Linear and multilinear algebra, matrix theory ; Mathematics ; Number theory ; Primitive roots ; Ryser’s conjecture ; Sciences and techniques of general use</subject><ispartof>Linear algebra and its applications, 2012-12, Vol.437 (12), p.2877-2886</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b2ec7aa0f448f6a45e04482c4a3049de795a381abc3e35e99b2d3bc0ac1f2bb93</citedby><cites>FETCH-LOGICAL-c404t-b2ec7aa0f448f6a45e04482c4a3049de795a381abc3e35e99b2d3bc0ac1f2bb93</cites><orcidid>0000-0002-4294-286X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2012.07.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26395608$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-brest.fr/hal-00748316$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Euler, Reinhardt</creatorcontrib><creatorcontrib>Gallardo, Luis H.</creatorcontrib><creatorcontrib>Rahavandrainy, Olivier</creatorcontrib><title>Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices</title><title>Linear algebra and its applications</title><description>Let H be a Hadamard Circulant matrix of order n=4h2 where h&gt;1 is an odd positive integer with at least two prime divisors such that the exponents of the prime numbers that divide h are big enough and such that the nonzero coefficients of the cyclotomic polynomial Φn(t) are bounded by a constant independent of n. Then for all the φ(n)n-th primitive roots w of 1, P(w)n is not an algebraic integer in the cyclotomic field K=Q(w), where P(t) is the representer polynomial of H and φ is the Euler function. This implies that P(w) is not a real number.</description><subject>Algebra</subject><subject>Circulant matrices</subject><subject>Computer Science</subject><subject>Cyclotomic polynomials</subject><subject>Discrete Mathematics</subject><subject>Exact sciences and technology</subject><subject>Hadamard matrices</subject><subject>Kronecker’s theorem</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Primitive roots</subject><subject>Ryser’s conjecture</subject><subject>Sciences and techniques of general use</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLtuXLhoPbn0hqthUEcYEG_rcJommNJph6QdmLc3pTJLVwk__5ec8xFySyGhQLOHJmkREwaUJZAnwNgZWdAi5zEt0uycLACYiHleppfkyvsGAEQObEHeP0djrLK6GyLVd7UdbN_5yPQuwilotBpGp6PeRB9Hr0Na9eMQbbDGHbo6WlunxhYDvcPBWaX9Nbkw2Hp983cuyffz09d6E2_fXl7Xq22sBIghrphWOSIYIQqToUg1hBtTAjmIstZhVOQFxUpxzVNdlhWreaUAFTWsqkq-JPfzuz_Yyr2zYZyj7NHKzWorpwwgFwWn2YGGLp27yvXeO21OAAU5-ZONDP7k5E9CLoO_wNzNzB69wtY47JT1J5BlvEwzKELvce7psOzBaif9pFPp2rogT9a9_eeXX9J8hWk</recordid><startdate>20121215</startdate><enddate>20121215</enddate><creator>Euler, Reinhardt</creator><creator>Gallardo, Luis H.</creator><creator>Rahavandrainy, Olivier</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4294-286X</orcidid></search><sort><creationdate>20121215</creationdate><title>Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices</title><author>Euler, Reinhardt ; Gallardo, Luis H. ; Rahavandrainy, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b2ec7aa0f448f6a45e04482c4a3049de795a381abc3e35e99b2d3bc0ac1f2bb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Circulant matrices</topic><topic>Computer Science</topic><topic>Cyclotomic polynomials</topic><topic>Discrete Mathematics</topic><topic>Exact sciences and technology</topic><topic>Hadamard matrices</topic><topic>Kronecker’s theorem</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Primitive roots</topic><topic>Ryser’s conjecture</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Euler, Reinhardt</creatorcontrib><creatorcontrib>Gallardo, Luis H.</creatorcontrib><creatorcontrib>Rahavandrainy, Olivier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Euler, Reinhardt</au><au>Gallardo, Luis H.</au><au>Rahavandrainy, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices</atitle><jtitle>Linear algebra and its applications</jtitle><date>2012-12-15</date><risdate>2012</risdate><volume>437</volume><issue>12</issue><spage>2877</spage><epage>2886</epage><pages>2877-2886</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><coden>LAAPAW</coden><abstract>Let H be a Hadamard Circulant matrix of order n=4h2 where h&gt;1 is an odd positive integer with at least two prime divisors such that the exponents of the prime numbers that divide h are big enough and such that the nonzero coefficients of the cyclotomic polynomial Φn(t) are bounded by a constant independent of n. Then for all the φ(n)n-th primitive roots w of 1, P(w)n is not an algebraic integer in the cyclotomic field K=Q(w), where P(t) is the representer polynomial of H and φ is the Euler function. This implies that P(w) is not a real number.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2012.07.022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4294-286X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2012-12, Vol.437 (12), p.2877-2886
issn 0024-3795
1873-1856
language eng
recordid cdi_hal_primary_oai_HAL_hal_00748316v1
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algebra
Circulant matrices
Computer Science
Cyclotomic polynomials
Discrete Mathematics
Exact sciences and technology
Hadamard matrices
Kronecker’s theorem
Linear and multilinear algebra, matrix theory
Mathematics
Number theory
Primitive roots
Ryser’s conjecture
Sciences and techniques of general use
title Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20conditions%20for%20a%20conjecture%20of%20Ryser%20about%20Hadamard%20Circulant%20matrices&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Euler,%20Reinhardt&rft.date=2012-12-15&rft.volume=437&rft.issue=12&rft.spage=2877&rft.epage=2886&rft.pages=2877-2886&rft.issn=0024-3795&rft.eissn=1873-1856&rft.coden=LAAPAW&rft_id=info:doi/10.1016/j.laa.2012.07.022&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00748316v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0024379512005630&rfr_iscdi=true