Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices
Let H be a Hadamard Circulant matrix of order n=4h2 where h>1 is an odd positive integer with at least two prime divisors such that the exponents of the prime numbers that divide h are big enough and such that the nonzero coefficients of the cyclotomic polynomial Φn(t) are bounded by a constant i...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2012-12, Vol.437 (12), p.2877-2886 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H be a Hadamard Circulant matrix of order n=4h2 where h>1 is an odd positive integer with at least two prime divisors such that the exponents of the prime numbers that divide h are big enough and such that the nonzero coefficients of the cyclotomic polynomial Φn(t) are bounded by a constant independent of n. Then for all the φ(n)n-th primitive roots w of 1, P(w)n is not an algebraic integer in the cyclotomic field K=Q(w), where P(t) is the representer polynomial of H and φ is the Euler function. This implies that P(w) is not a real number. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2012.07.022 |