Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA)
Benthic oxygen uptake and nutrient releases of N, P and Si were measured weekly at 2 sites in South San Francisco Bay around the 1996 spring bloom. Exchanges across the sediment-water interface were estimated from whole core incubations performed in the laboratory at in situ temperature and in dark....
Gespeichert in:
Veröffentlicht in: | Marine ecology. Progress series (Halstenbek) 2000-01, Vol.197, p.67-80 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | |
container_start_page | 67 |
container_title | Marine ecology. Progress series (Halstenbek) |
container_volume | 197 |
creator | Grenz, Christian Cloern, James E. Hager, Stephen W. Cole, Brian E. |
description | Benthic oxygen uptake and nutrient releases of N, P and Si were measured weekly at 2 sites in South San Francisco Bay around the 1996 spring bloom. Exchanges across the sediment-water interface were estimated from whole core incubations performed in the laboratory at in situ temperature and in dark. Fluxes changed significantly on a weekly time scale. Over a period of 15 wk the fluxes of dissolved inorganic N, P and Si ranged from –40 to +200, 0 to 13 and from 30 to 400 μmol m–2 h–1 respectively. Sediment oxygen demand increased from 10 before to 64 mg O2 m–2 h–1 just after the bloom period. During the bloom, nutrient fluxes represented about 20, 16 and 9% of the Si, P and N requirements for primary production. Before and after the bloom period, Si fluxes contributed up to 30 and >100% of this requirement and P and N fluxes up to 15 and 50% respectively. Simple empirical models explain most of the spatial-temporal variability of benthic fluxes of Si, P and NH4 (but not NO3) from 3 predictor variables: sediment porosity, nutrient concentration in bottom waters and chlorophyll content of surficial sediments. These models show that algal blooms influence benthic-pelagic nutrient exchange through 2 processes: (1) depletion of nutrients from the water column (which enhances gradient-driven transports across the sediment-water interface) and (2) sedimentation of labile phytodetritus (which promotes remineralization in or on the surficial sediments). Rates and patterns of nutrient cycling were very different at the shallow and deep study sites, illustrating the challenge of extrapolating measurements of coupled algae-nutrient dynamics to whole ecosystems. |
doi_str_mv | 10.3354/meps197067 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00745138v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24855745</jstor_id><sourcerecordid>24855745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-df7b291208658d72c0c2a52d9c893ad5718b9279206736f34b3325afbdb1817e3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvhwh3JB4QoUsAf8ddxKZQircRh6TlyHKeb4tjBdlDzL_jJeJuqe-Q0o3mfGb0zA8BrjD5SyupPo50SVgJx8QRsMMe8wkypp2CDsMCV5BQ9By9SukUI81rwDfj7ZfF6HEyCoYd-znGwPkOzGDf4G6h9B6N1OtsOtkU4DOYEHcVwt9xYD3s339kEuzned8E03SfTYclhctr_ysHD1oUwwsHDfZjzAe61h5dRezMkE-BnvcD31_vt-UvwrNcu2VcP8QxcX379eXFV7X58-36x3VWmFjJXXS9aojBBkjPZCWKQIZqRThmpqO6YwLJVRChSTkF5T-uWUsJ033YtllhYegbO17kH7Zpid9RxaYIemqvtrjnWEBI1w1T-wYV9t7JTDL9nm3IzFtPWlc1smFODJSJScPp_UHBUE1oX8MMKmhhSirZ_tIBRc_xkc_pkgd8-TNXJaNevRzt1UHX0WrA3K3abcoiPMqklY2UV-g8goaf5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17604234</pqid></control><display><type>article</type><title>Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA)</title><source>Inter-Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Grenz, Christian ; Cloern, James E. ; Hager, Stephen W. ; Cole, Brian E.</creator><creatorcontrib>Grenz, Christian ; Cloern, James E. ; Hager, Stephen W. ; Cole, Brian E.</creatorcontrib><description>Benthic oxygen uptake and nutrient releases of N, P and Si were measured weekly at 2 sites in South San Francisco Bay around the 1996 spring bloom. Exchanges across the sediment-water interface were estimated from whole core incubations performed in the laboratory at in situ temperature and in dark. Fluxes changed significantly on a weekly time scale. Over a period of 15 wk the fluxes of dissolved inorganic N, P and Si ranged from –40 to +200, 0 to 13 and from 30 to 400 μmol m–2 h–1 respectively. Sediment oxygen demand increased from 10 before to 64 mg O2 m–2 h–1 just after the bloom period. During the bloom, nutrient fluxes represented about 20, 16 and 9% of the Si, P and N requirements for primary production. Before and after the bloom period, Si fluxes contributed up to 30 and >100% of this requirement and P and N fluxes up to 15 and 50% respectively. Simple empirical models explain most of the spatial-temporal variability of benthic fluxes of Si, P and NH4 (but not NO3) from 3 predictor variables: sediment porosity, nutrient concentration in bottom waters and chlorophyll content of surficial sediments. These models show that algal blooms influence benthic-pelagic nutrient exchange through 2 processes: (1) depletion of nutrients from the water column (which enhances gradient-driven transports across the sediment-water interface) and (2) sedimentation of labile phytodetritus (which promotes remineralization in or on the surficial sediments). Rates and patterns of nutrient cycling were very different at the shallow and deep study sites, illustrating the challenge of extrapolating measurements of coupled algae-nutrient dynamics to whole ecosystems.</description><identifier>ISSN: 0171-8630</identifier><identifier>EISSN: 1616-1599</identifier><identifier>DOI: 10.3354/meps197067</identifier><language>eng</language><publisher>Oldendorf: Inter-Research</publisher><subject>Algal blooms ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Biomass ; Brackish water ecosystems ; Environmental Sciences ; Estuaries ; Fundamental and applied biological sciences. Psychology ; Global Changes ; Marine ; Nutrient cycle ; Nutrient solutions ; Oxygen ; Phytoplankton ; Primary productivity ; Sediments ; Shoals ; Synecology ; USA, California</subject><ispartof>Marine ecology. Progress series (Halstenbek), 2000-01, Vol.197, p.67-80</ispartof><rights>Copyright © Inter-Research 2000</rights><rights>2000 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-df7b291208658d72c0c2a52d9c893ad5718b9279206736f34b3325afbdb1817e3</citedby><orcidid>0000-0002-6922-9124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24855745$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24855745$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,3759,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1390074$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00745138$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grenz, Christian</creatorcontrib><creatorcontrib>Cloern, James E.</creatorcontrib><creatorcontrib>Hager, Stephen W.</creatorcontrib><creatorcontrib>Cole, Brian E.</creatorcontrib><title>Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA)</title><title>Marine ecology. Progress series (Halstenbek)</title><description>Benthic oxygen uptake and nutrient releases of N, P and Si were measured weekly at 2 sites in South San Francisco Bay around the 1996 spring bloom. Exchanges across the sediment-water interface were estimated from whole core incubations performed in the laboratory at in situ temperature and in dark. Fluxes changed significantly on a weekly time scale. Over a period of 15 wk the fluxes of dissolved inorganic N, P and Si ranged from –40 to +200, 0 to 13 and from 30 to 400 μmol m–2 h–1 respectively. Sediment oxygen demand increased from 10 before to 64 mg O2 m–2 h–1 just after the bloom period. During the bloom, nutrient fluxes represented about 20, 16 and 9% of the Si, P and N requirements for primary production. Before and after the bloom period, Si fluxes contributed up to 30 and >100% of this requirement and P and N fluxes up to 15 and 50% respectively. Simple empirical models explain most of the spatial-temporal variability of benthic fluxes of Si, P and NH4 (but not NO3) from 3 predictor variables: sediment porosity, nutrient concentration in bottom waters and chlorophyll content of surficial sediments. These models show that algal blooms influence benthic-pelagic nutrient exchange through 2 processes: (1) depletion of nutrients from the water column (which enhances gradient-driven transports across the sediment-water interface) and (2) sedimentation of labile phytodetritus (which promotes remineralization in or on the surficial sediments). Rates and patterns of nutrient cycling were very different at the shallow and deep study sites, illustrating the challenge of extrapolating measurements of coupled algae-nutrient dynamics to whole ecosystems.</description><subject>Algal blooms</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Brackish water ecosystems</subject><subject>Environmental Sciences</subject><subject>Estuaries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Global Changes</subject><subject>Marine</subject><subject>Nutrient cycle</subject><subject>Nutrient solutions</subject><subject>Oxygen</subject><subject>Phytoplankton</subject><subject>Primary productivity</subject><subject>Sediments</subject><subject>Shoals</subject><subject>Synecology</subject><subject>USA, California</subject><issn>0171-8630</issn><issn>1616-1599</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEkvhwh3JB4QoUsAf8ddxKZQircRh6TlyHKeb4tjBdlDzL_jJeJuqe-Q0o3mfGb0zA8BrjD5SyupPo50SVgJx8QRsMMe8wkypp2CDsMCV5BQ9By9SukUI81rwDfj7ZfF6HEyCoYd-znGwPkOzGDf4G6h9B6N1OtsOtkU4DOYEHcVwt9xYD3s339kEuzned8E03SfTYclhctr_ysHD1oUwwsHDfZjzAe61h5dRezMkE-BnvcD31_vt-UvwrNcu2VcP8QxcX379eXFV7X58-36x3VWmFjJXXS9aojBBkjPZCWKQIZqRThmpqO6YwLJVRChSTkF5T-uWUsJ033YtllhYegbO17kH7Zpid9RxaYIemqvtrjnWEBI1w1T-wYV9t7JTDL9nm3IzFtPWlc1smFODJSJScPp_UHBUE1oX8MMKmhhSirZ_tIBRc_xkc_pkgd8-TNXJaNevRzt1UHX0WrA3K3abcoiPMqklY2UV-g8goaf5</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Grenz, Christian</creator><creator>Cloern, James E.</creator><creator>Hager, Stephen W.</creator><creator>Cole, Brian E.</creator><general>Inter-Research</general><general>Inter Research</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6922-9124</orcidid></search><sort><creationdate>20000101</creationdate><title>Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA)</title><author>Grenz, Christian ; Cloern, James E. ; Hager, Stephen W. ; Cole, Brian E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-df7b291208658d72c0c2a52d9c893ad5718b9279206736f34b3325afbdb1817e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algal blooms</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Brackish water ecosystems</topic><topic>Environmental Sciences</topic><topic>Estuaries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Global Changes</topic><topic>Marine</topic><topic>Nutrient cycle</topic><topic>Nutrient solutions</topic><topic>Oxygen</topic><topic>Phytoplankton</topic><topic>Primary productivity</topic><topic>Sediments</topic><topic>Shoals</topic><topic>Synecology</topic><topic>USA, California</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grenz, Christian</creatorcontrib><creatorcontrib>Cloern, James E.</creatorcontrib><creatorcontrib>Hager, Stephen W.</creatorcontrib><creatorcontrib>Cole, Brian E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grenz, Christian</au><au>Cloern, James E.</au><au>Hager, Stephen W.</au><au>Cole, Brian E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA)</atitle><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>197</volume><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0171-8630</issn><eissn>1616-1599</eissn><abstract>Benthic oxygen uptake and nutrient releases of N, P and Si were measured weekly at 2 sites in South San Francisco Bay around the 1996 spring bloom. Exchanges across the sediment-water interface were estimated from whole core incubations performed in the laboratory at in situ temperature and in dark. Fluxes changed significantly on a weekly time scale. Over a period of 15 wk the fluxes of dissolved inorganic N, P and Si ranged from –40 to +200, 0 to 13 and from 30 to 400 μmol m–2 h–1 respectively. Sediment oxygen demand increased from 10 before to 64 mg O2 m–2 h–1 just after the bloom period. During the bloom, nutrient fluxes represented about 20, 16 and 9% of the Si, P and N requirements for primary production. Before and after the bloom period, Si fluxes contributed up to 30 and >100% of this requirement and P and N fluxes up to 15 and 50% respectively. Simple empirical models explain most of the spatial-temporal variability of benthic fluxes of Si, P and NH4 (but not NO3) from 3 predictor variables: sediment porosity, nutrient concentration in bottom waters and chlorophyll content of surficial sediments. These models show that algal blooms influence benthic-pelagic nutrient exchange through 2 processes: (1) depletion of nutrients from the water column (which enhances gradient-driven transports across the sediment-water interface) and (2) sedimentation of labile phytodetritus (which promotes remineralization in or on the surficial sediments). Rates and patterns of nutrient cycling were very different at the shallow and deep study sites, illustrating the challenge of extrapolating measurements of coupled algae-nutrient dynamics to whole ecosystems.</abstract><cop>Oldendorf</cop><pub>Inter-Research</pub><doi>10.3354/meps197067</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6922-9124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-8630 |
ispartof | Marine ecology. Progress series (Halstenbek), 2000-01, Vol.197, p.67-80 |
issn | 0171-8630 1616-1599 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00745138v1 |
source | Inter-Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
subjects | Algal blooms Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Biomass Brackish water ecosystems Environmental Sciences Estuaries Fundamental and applied biological sciences. Psychology Global Changes Marine Nutrient cycle Nutrient solutions Oxygen Phytoplankton Primary productivity Sediments Shoals Synecology USA, California |
title | Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20nutrient%20cycling%20and%20related%20benthic%20nutrient%20and%20oxygen%20fluxes%20during%20a%20spring%20phytoplankton%20bloom%20in%20South%20San%20Francisco%20Bay%20(USA)&rft.jtitle=Marine%20ecology.%20Progress%20series%20(Halstenbek)&rft.au=Grenz,%20Christian&rft.date=2000-01-01&rft.volume=197&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0171-8630&rft.eissn=1616-1599&rft_id=info:doi/10.3354/meps197067&rft_dat=%3Cjstor_hal_p%3E24855745%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17604234&rft_id=info:pmid/&rft_jstor_id=24855745&rfr_iscdi=true |