Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow
We study two-phase stratified flow where the bottom layer is a thin laminar liquid and the upper layer is a fully developed gas flow. The gas flow can be laminar or turbulent. To determine the boundary between convective and absolute instability, we use Orr–Sommerfeld stability theory, and a combina...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2013-01, Vol.714, p.58-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | |
container_start_page | 58 |
container_title | Journal of fluid mechanics |
container_volume | 714 |
creator | Ó Náraigh, Lennon Spelt, Peter D. M. Shaw, Stephen J. |
description | We study two-phase stratified flow where the bottom layer is a thin laminar liquid and the upper layer is a fully developed gas flow. The gas flow can be laminar or turbulent. To determine the boundary between convective and absolute instability, we use Orr–Sommerfeld stability theory, and a combination of linear modal analysis and ray analysis. For turbulent gas flow, and for the density ratio
$r= 1000$
, we find large regions of parameter space that produce absolute instability. These parameter regimes involve viscosity ratios of direct relevance to oil and gas flows. If, instead, the gas layer is laminar, absolute instability persists for the density ratio
$r= 1000$
, although the convective/absolute stability boundary occurs at a viscosity ratio that is an order of magnitude smaller than in the turbulent case. Two further unstable temporal modes exist in both the laminar and the turbulent cases, one of which can exclude absolute instability. We compare our results with an experimentally determined flow-regime map, and discuss the potential application of the present method to nonlinear analyses. |
doi_str_mv | 10.1017/jfm.2012.452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00744219v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_452</cupid><sourcerecordid>2854753921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-9ff845cee8be21d5357ade07594d29554543016fda8e26bd973c7b762b17e8813</originalsourceid><addsrcrecordid>eNptkMtKxDAUhoMoOF52PkBBXAh2PEmTpl0O4g0G3Ci4C6dtqhkyqSatw-x8B9_QJzFlBnHh6oSfL_85fIScUJhSoPJy0S6nDCibcsF2yITyvExlzsUumQAwllLKYJ8chLAAoBmUckKeZ1Xo7NDrxBqn0SfGhR4rY02_ju_E4tK4GKNrkn7w1WC165MXDN-fX9a8DybGqy61uNY-qV_ROW2T1narI7LXog36eDsPydPN9ePVXTp_uL2_ms3TmgPv07JtCy5qrYtKM9qITEhsNEhR8oaVQnDBM6B522ChWV41pcxqWcmcVVTqoqDZITnf9L6iVW_eLNGvVYdG3c3maswAJOeMlh8je7ph33z3PujQq0U3eBfPU5TlOYxWykhdbKjadyF43f7WUlCjZxU9q9Gzip4jfrYtxVCjbT262oTfPywvCiEBIjfd1uKy8qZ50X-2_1f8A6I0jKI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266000139</pqid></control><display><type>article</type><title>Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow</title><source>Cambridge Journals</source><creator>Ó Náraigh, Lennon ; Spelt, Peter D. M. ; Shaw, Stephen J.</creator><creatorcontrib>Ó Náraigh, Lennon ; Spelt, Peter D. M. ; Shaw, Stephen J.</creatorcontrib><description>We study two-phase stratified flow where the bottom layer is a thin laminar liquid and the upper layer is a fully developed gas flow. The gas flow can be laminar or turbulent. To determine the boundary between convective and absolute instability, we use Orr–Sommerfeld stability theory, and a combination of linear modal analysis and ray analysis. For turbulent gas flow, and for the density ratio
$r= 1000$
, we find large regions of parameter space that produce absolute instability. These parameter regimes involve viscosity ratios of direct relevance to oil and gas flows. If, instead, the gas layer is laminar, absolute instability persists for the density ratio
$r= 1000$
, although the convective/absolute stability boundary occurs at a viscosity ratio that is an order of magnitude smaller than in the turbulent case. Two further unstable temporal modes exist in both the laminar and the turbulent cases, one of which can exclude absolute instability. We compare our results with an experimentally determined flow-regime map, and discuss the potential application of the present method to nonlinear analyses.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.452</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buoyancy-driven instability ; Channel flow ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Interfacial instability ; Mechanics ; Physics ; Stratified flow ; Turbulent flow ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2013-01, Vol.714, p.58-94</ispartof><rights>2013 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-9ff845cee8be21d5357ade07594d29554543016fda8e26bd973c7b762b17e8813</citedby><cites>FETCH-LOGICAL-c404t-9ff845cee8be21d5357ade07594d29554543016fda8e26bd973c7b762b17e8813</cites><orcidid>0000-0001-5662-5542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012004521/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,777,781,882,27905,27906,55609</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26885700$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00744219$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ó Náraigh, Lennon</creatorcontrib><creatorcontrib>Spelt, Peter D. M.</creatorcontrib><creatorcontrib>Shaw, Stephen J.</creatorcontrib><title>Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We study two-phase stratified flow where the bottom layer is a thin laminar liquid and the upper layer is a fully developed gas flow. The gas flow can be laminar or turbulent. To determine the boundary between convective and absolute instability, we use Orr–Sommerfeld stability theory, and a combination of linear modal analysis and ray analysis. For turbulent gas flow, and for the density ratio
$r= 1000$
, we find large regions of parameter space that produce absolute instability. These parameter regimes involve viscosity ratios of direct relevance to oil and gas flows. If, instead, the gas layer is laminar, absolute instability persists for the density ratio
$r= 1000$
, although the convective/absolute stability boundary occurs at a viscosity ratio that is an order of magnitude smaller than in the turbulent case. Two further unstable temporal modes exist in both the laminar and the turbulent cases, one of which can exclude absolute instability. We compare our results with an experimentally determined flow-regime map, and discuss the potential application of the present method to nonlinear analyses.</description><subject>Buoyancy-driven instability</subject><subject>Channel flow</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Interfacial instability</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Stratified flow</subject><subject>Turbulent flow</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtKxDAUhoMoOF52PkBBXAh2PEmTpl0O4g0G3Ci4C6dtqhkyqSatw-x8B9_QJzFlBnHh6oSfL_85fIScUJhSoPJy0S6nDCibcsF2yITyvExlzsUumQAwllLKYJ8chLAAoBmUckKeZ1Xo7NDrxBqn0SfGhR4rY02_ju_E4tK4GKNrkn7w1WC165MXDN-fX9a8DybGqy61uNY-qV_ROW2T1narI7LXog36eDsPydPN9ePVXTp_uL2_ms3TmgPv07JtCy5qrYtKM9qITEhsNEhR8oaVQnDBM6B522ChWV41pcxqWcmcVVTqoqDZITnf9L6iVW_eLNGvVYdG3c3maswAJOeMlh8je7ph33z3PujQq0U3eBfPU5TlOYxWykhdbKjadyF43f7WUlCjZxU9q9Gzip4jfrYtxVCjbT262oTfPywvCiEBIjfd1uKy8qZ50X-2_1f8A6I0jKI</recordid><startdate>20130110</startdate><enddate>20130110</enddate><creator>Ó Náraigh, Lennon</creator><creator>Spelt, Peter D. M.</creator><creator>Shaw, Stephen J.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5662-5542</orcidid></search><sort><creationdate>20130110</creationdate><title>Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow</title><author>Ó Náraigh, Lennon ; Spelt, Peter D. M. ; Shaw, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-9ff845cee8be21d5357ade07594d29554543016fda8e26bd973c7b762b17e8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Buoyancy-driven instability</topic><topic>Channel flow</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Interfacial instability</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Stratified flow</topic><topic>Turbulent flow</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ó Náraigh, Lennon</creatorcontrib><creatorcontrib>Spelt, Peter D. M.</creatorcontrib><creatorcontrib>Shaw, Stephen J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ó Náraigh, Lennon</au><au>Spelt, Peter D. M.</au><au>Shaw, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-01-10</date><risdate>2013</risdate><volume>714</volume><spage>58</spage><epage>94</epage><pages>58-94</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We study two-phase stratified flow where the bottom layer is a thin laminar liquid and the upper layer is a fully developed gas flow. The gas flow can be laminar or turbulent. To determine the boundary between convective and absolute instability, we use Orr–Sommerfeld stability theory, and a combination of linear modal analysis and ray analysis. For turbulent gas flow, and for the density ratio
$r= 1000$
, we find large regions of parameter space that produce absolute instability. These parameter regimes involve viscosity ratios of direct relevance to oil and gas flows. If, instead, the gas layer is laminar, absolute instability persists for the density ratio
$r= 1000$
, although the convective/absolute stability boundary occurs at a viscosity ratio that is an order of magnitude smaller than in the turbulent case. Two further unstable temporal modes exist in both the laminar and the turbulent cases, one of which can exclude absolute instability. We compare our results with an experimentally determined flow-regime map, and discuss the potential application of the present method to nonlinear analyses.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.452</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-5662-5542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2013-01, Vol.714, p.58-94 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00744219v1 |
source | Cambridge Journals |
subjects | Buoyancy-driven instability Channel flow Engineering Sciences Exact sciences and technology Fluid dynamics Fluid mechanics Fluids mechanics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Interfacial instability Mechanics Physics Stratified flow Turbulent flow Viscosity |
title | Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absolute%20linear%20instability%20in%20laminar%20and%20turbulent%20gas%E2%80%93liquid%20two-layer%20channel%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=%C3%93%20N%C3%A1raigh,%20Lennon&rft.date=2013-01-10&rft.volume=714&rft.spage=58&rft.epage=94&rft.pages=58-94&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.452&rft_dat=%3Cproquest_hal_p%3E2854753921%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266000139&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_452&rfr_iscdi=true |