Learning Hierarchical Features for Scene Labeling

Scene labeling consists of labeling each pixel in an image with the category of the object it belongs to. We propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-08, Vol.35 (8), p.1915-1929
Hauptverfasser: Farabet, C., Couprie, C., Najman, L., LeCun, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1929
container_issue 8
container_start_page 1915
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 35
creator Farabet, C.
Couprie, C.
Najman, L.
LeCun, Y.
description Scene labeling consists of labeling each pixel in an image with the category of the object it belongs to. We propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method alleviates the need for engineered features, and produces a powerful representation that captures texture, shape, and contextual information. We report results using multiple postprocessing methods to produce the final labeling. Among those, we propose a technique to automatically retrieve, from a pool of segmentation components, an optimal set of components that best explain the scene; these components are arbitrary, for example, they can be taken from a segmentation tree or from any family of oversegmentations. The system yields record accuracies on the SIFT Flow dataset (33 classes) and the Barcelona dataset (170 classes) and near-record accuracy on Stanford background dataset (eight classes), while being an order of magnitude faster than competing approaches, producing a 320×240 image labeling in less than a second, including feature extraction.
doi_str_mv 10.1109/TPAMI.2012.231
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00742077v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6338939</ieee_id><sourcerecordid>1370638754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-ae3f0a17409a37b01a096ad248c9a55a6debb29b66f58f044067b69b0de8ab6a3</originalsourceid><addsrcrecordid>eNo9kU1Lw0AQhhdRtFavXgTJUQ-psx_Zj2MpaoWIgvW8zKYTjaSN7raC_97Uak8DM8-8h-dl7IzDiHNw17On8cP9SAAXIyH5HhtwJ10uC-n22QC4Frm1wh6x45TeAbgqQB6yIyGNNVKpAeMlYVw2y9ds2lDEWL01FbbZLeFqHSlldRez54qWlJUYqO3BE3ZQY5vo9G8O2cvtzWwyzcvHu_vJuMyrAmCVI8kakBsFDqUJwBGcxrlQtnJYFKjnFIJwQeu6sDUoBdoE7QLMyWLQKIfsapv7hq3_iM0C47fvsPHTcek3OwCjBBjzxXv2cst-xO5zTWnlF02qqG1xSd06eS4NaGlNoXp0tEWr2KUUqd5lc_Abpf5Xqd8o9b3S_uHiL3sdFjTf4f8Oe-B8CzREtDtrKW1fhfwB13139A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370638754</pqid></control><display><type>article</type><title>Learning Hierarchical Features for Scene Labeling</title><source>IEEE Electronic Library (IEL)</source><creator>Farabet, C. ; Couprie, C. ; Najman, L. ; LeCun, Y.</creator><creatorcontrib>Farabet, C. ; Couprie, C. ; Najman, L. ; LeCun, Y.</creatorcontrib><description>Scene labeling consists of labeling each pixel in an image with the category of the object it belongs to. We propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method alleviates the need for engineered features, and produces a powerful representation that captures texture, shape, and contextual information. We report results using multiple postprocessing methods to produce the final labeling. Among those, we propose a technique to automatically retrieve, from a pool of segmentation components, an optimal set of components that best explain the scene; these components are arbitrary, for example, they can be taken from a segmentation tree or from any family of oversegmentations. The system yields record accuracies on the SIFT Flow dataset (33 classes) and the Barcelona dataset (170 classes) and near-record accuracy on Stanford background dataset (eight classes), while being an order of magnitude faster than competing approaches, producing a 320×240 image labeling in less than a second, including feature extraction.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.231</identifier><identifier>PMID: 23787344</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Computer Science ; Computer Vision and Pattern Recognition ; Context ; Convolutional networks ; deep learning ; Feature extraction ; image classification ; Image edge detection ; Image segmentation ; Labeling ; scene parsing ; Vectors</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-08, Vol.35 (8), p.1915-1929</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-ae3f0a17409a37b01a096ad248c9a55a6debb29b66f58f044067b69b0de8ab6a3</citedby><cites>FETCH-LOGICAL-c500t-ae3f0a17409a37b01a096ad248c9a55a6debb29b66f58f044067b69b0de8ab6a3</cites><orcidid>0000-0002-6190-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6338939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6338939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23787344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00742077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Farabet, C.</creatorcontrib><creatorcontrib>Couprie, C.</creatorcontrib><creatorcontrib>Najman, L.</creatorcontrib><creatorcontrib>LeCun, Y.</creatorcontrib><title>Learning Hierarchical Features for Scene Labeling</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Scene labeling consists of labeling each pixel in an image with the category of the object it belongs to. We propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method alleviates the need for engineered features, and produces a powerful representation that captures texture, shape, and contextual information. We report results using multiple postprocessing methods to produce the final labeling. Among those, we propose a technique to automatically retrieve, from a pool of segmentation components, an optimal set of components that best explain the scene; these components are arbitrary, for example, they can be taken from a segmentation tree or from any family of oversegmentations. The system yields record accuracies on the SIFT Flow dataset (33 classes) and the Barcelona dataset (170 classes) and near-record accuracy on Stanford background dataset (eight classes), while being an order of magnitude faster than competing approaches, producing a 320×240 image labeling in less than a second, including feature extraction.</description><subject>Accuracy</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Context</subject><subject>Convolutional networks</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>image classification</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>scene parsing</subject><subject>Vectors</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU1Lw0AQhhdRtFavXgTJUQ-psx_Zj2MpaoWIgvW8zKYTjaSN7raC_97Uak8DM8-8h-dl7IzDiHNw17On8cP9SAAXIyH5HhtwJ10uC-n22QC4Frm1wh6x45TeAbgqQB6yIyGNNVKpAeMlYVw2y9ds2lDEWL01FbbZLeFqHSlldRez54qWlJUYqO3BE3ZQY5vo9G8O2cvtzWwyzcvHu_vJuMyrAmCVI8kakBsFDqUJwBGcxrlQtnJYFKjnFIJwQeu6sDUoBdoE7QLMyWLQKIfsapv7hq3_iM0C47fvsPHTcek3OwCjBBjzxXv2cst-xO5zTWnlF02qqG1xSd06eS4NaGlNoXp0tEWr2KUUqd5lc_Abpf5Xqd8o9b3S_uHiL3sdFjTf4f8Oe-B8CzREtDtrKW1fhfwB13139A</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Farabet, C.</creator><creator>Couprie, C.</creator><creator>Najman, L.</creator><creator>LeCun, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid></search><sort><creationdate>20130801</creationdate><title>Learning Hierarchical Features for Scene Labeling</title><author>Farabet, C. ; Couprie, C. ; Najman, L. ; LeCun, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-ae3f0a17409a37b01a096ad248c9a55a6debb29b66f58f044067b69b0de8ab6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Context</topic><topic>Convolutional networks</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>image classification</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>scene parsing</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farabet, C.</creatorcontrib><creatorcontrib>Couprie, C.</creatorcontrib><creatorcontrib>Najman, L.</creatorcontrib><creatorcontrib>LeCun, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farabet, C.</au><au>Couprie, C.</au><au>Najman, L.</au><au>LeCun, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Hierarchical Features for Scene Labeling</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>35</volume><issue>8</issue><spage>1915</spage><epage>1929</epage><pages>1915-1929</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Scene labeling consists of labeling each pixel in an image with the category of the object it belongs to. We propose a method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel. The method alleviates the need for engineered features, and produces a powerful representation that captures texture, shape, and contextual information. We report results using multiple postprocessing methods to produce the final labeling. Among those, we propose a technique to automatically retrieve, from a pool of segmentation components, an optimal set of components that best explain the scene; these components are arbitrary, for example, they can be taken from a segmentation tree or from any family of oversegmentations. The system yields record accuracies on the SIFT Flow dataset (33 classes) and the Barcelona dataset (170 classes) and near-record accuracy on Stanford background dataset (eight classes), while being an order of magnitude faster than competing approaches, producing a 320×240 image labeling in less than a second, including feature extraction.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23787344</pmid><doi>10.1109/TPAMI.2012.231</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2013-08, Vol.35 (8), p.1915-1929
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_hal_primary_oai_HAL_hal_00742077v1
source IEEE Electronic Library (IEL)
subjects Accuracy
Computer Science
Computer Vision and Pattern Recognition
Context
Convolutional networks
deep learning
Feature extraction
image classification
Image edge detection
Image segmentation
Labeling
scene parsing
Vectors
title Learning Hierarchical Features for Scene Labeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Hierarchical%20Features%20for%20Scene%20Labeling&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Farabet,%20C.&rft.date=2013-08-01&rft.volume=35&rft.issue=8&rft.spage=1915&rft.epage=1929&rft.pages=1915-1929&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.231&rft_dat=%3Cproquest_RIE%3E1370638754%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370638754&rft_id=info:pmid/23787344&rft_ieee_id=6338939&rfr_iscdi=true