Visual graph modeling for scene recognition and mobile robot localization

Image retrieval and categorization may need to consider several types of visual features and spatial information between them (e.g., different point of views of an image). This paper presents a novel approach that exploits an extension of the language modeling approach from information retrieval to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2012-09, Vol.60 (2), p.419-441
Hauptverfasser: Pham, Trong-Ton, Mulhem, Philippe, Maisonnasse, Loïc, Gaussier, Eric, Lim, Joo-Hwee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 2
container_start_page 419
container_title Multimedia tools and applications
container_volume 60
creator Pham, Trong-Ton
Mulhem, Philippe
Maisonnasse, Loïc
Gaussier, Eric
Lim, Joo-Hwee
description Image retrieval and categorization may need to consider several types of visual features and spatial information between them (e.g., different point of views of an image). This paper presents a novel approach that exploits an extension of the language modeling approach from information retrieval to the problem of graph-based image retrieval and categorization. Such versatile graph model is needed to represent the multiple points of views of images. A language model is defined on such graphs to handle a fast graph matching. We present the experiments achieved with several instances of the proposed model on two collections of images: one composed of 3,849 touristic images and another composed of 3,633 images captured by a mobile robot. Experimental results show that using visual graph model (VGM) improves the accuracies of the results of the standard language model (LM) and outperforms the Support Vector Machine (SVM) method.
doi_str_mv 10.1007/s11042-010-0598-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00742059v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031316998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-33e552a84bea79d4d3a01ad3e62825479cfd23a852e3a0a56a5d0dad563ca1733</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFZ_gLc96iGaSTb7cSxFrVDwol7DdJPdpqRJTbqC_nqzrHj0NMPM8w7Mk2XXQO-A0uo-AtCCEQqUUNHUpD7JZiAqTqqKwWnqeU1JJSicZxcx7iiFUrBilj2_mzigzfuAh22-90pb4_q88yGPrXY6D7r1vTNH412OTiVkY2wa-40_5ta3aM03jtvL7KxDG_XVb51nb48Pr8sVWb88PS8Xa9Lypj4SzrUQDOtio7FqVKE4UkDFdclqJoqqaTvFONaC6bRBUaJQVKESJW8RKs7n2e10d4tWHoLZY_iSHo1cLdZynCUdBUsSPiGxNxN7CP5j0PEo9ya9ZS067YcogXLgUDZNnVCY0Db4GIPu_m4DlaNiOSmWSbEcFcsxw6ZMTKzrdZA7PwSXvv8n9APAB33B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031316998</pqid></control><display><type>article</type><title>Visual graph modeling for scene recognition and mobile robot localization</title><source>SpringerLink (Online service)</source><creator>Pham, Trong-Ton ; Mulhem, Philippe ; Maisonnasse, Loïc ; Gaussier, Eric ; Lim, Joo-Hwee</creator><creatorcontrib>Pham, Trong-Ton ; Mulhem, Philippe ; Maisonnasse, Loïc ; Gaussier, Eric ; Lim, Joo-Hwee</creatorcontrib><description>Image retrieval and categorization may need to consider several types of visual features and spatial information between them (e.g., different point of views of an image). This paper presents a novel approach that exploits an extension of the language modeling approach from information retrieval to the problem of graph-based image retrieval and categorization. Such versatile graph model is needed to represent the multiple points of views of images. A language model is defined on such graphs to handle a fast graph matching. We present the experiments achieved with several instances of the proposed model on two collections of images: one composed of 3,849 touristic images and another composed of 3,633 images captured by a mobile robot. Experimental results show that using visual graph model (VGM) improves the accuracies of the results of the standard language model (LM) and outperforms the Support Vector Machine (SVM) method.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-010-0598-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Graphs ; Information Retrieval ; Machine Learning ; Multimedia ; Multimedia Information Systems ; Retrieval ; Robots ; Special Purpose and Application-Based Systems ; Support vector machines ; Visual</subject><ispartof>Multimedia tools and applications, 2012-09, Vol.60 (2), p.419-441</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-33e552a84bea79d4d3a01ad3e62825479cfd23a852e3a0a56a5d0dad563ca1733</citedby><cites>FETCH-LOGICAL-c398t-33e552a84bea79d4d3a01ad3e62825479cfd23a852e3a0a56a5d0dad563ca1733</cites><orcidid>0000-0002-3245-6462 ; 0000-0002-8858-3233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-010-0598-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-010-0598-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00742059$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Trong-Ton</creatorcontrib><creatorcontrib>Mulhem, Philippe</creatorcontrib><creatorcontrib>Maisonnasse, Loïc</creatorcontrib><creatorcontrib>Gaussier, Eric</creatorcontrib><creatorcontrib>Lim, Joo-Hwee</creatorcontrib><title>Visual graph modeling for scene recognition and mobile robot localization</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Image retrieval and categorization may need to consider several types of visual features and spatial information between them (e.g., different point of views of an image). This paper presents a novel approach that exploits an extension of the language modeling approach from information retrieval to the problem of graph-based image retrieval and categorization. Such versatile graph model is needed to represent the multiple points of views of images. A language model is defined on such graphs to handle a fast graph matching. We present the experiments achieved with several instances of the proposed model on two collections of images: one composed of 3,849 touristic images and another composed of 3,633 images captured by a mobile robot. Experimental results show that using visual graph model (VGM) improves the accuracies of the results of the standard language model (LM) and outperforms the Support Vector Machine (SVM) method.</description><subject>Artificial Intelligence</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Graphs</subject><subject>Information Retrieval</subject><subject>Machine Learning</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Retrieval</subject><subject>Robots</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Support vector machines</subject><subject>Visual</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFZ_gLc96iGaSTb7cSxFrVDwol7DdJPdpqRJTbqC_nqzrHj0NMPM8w7Mk2XXQO-A0uo-AtCCEQqUUNHUpD7JZiAqTqqKwWnqeU1JJSicZxcx7iiFUrBilj2_mzigzfuAh22-90pb4_q88yGPrXY6D7r1vTNH412OTiVkY2wa-40_5ta3aM03jtvL7KxDG_XVb51nb48Pr8sVWb88PS8Xa9Lypj4SzrUQDOtio7FqVKE4UkDFdclqJoqqaTvFONaC6bRBUaJQVKESJW8RKs7n2e10d4tWHoLZY_iSHo1cLdZynCUdBUsSPiGxNxN7CP5j0PEo9ya9ZS067YcogXLgUDZNnVCY0Db4GIPu_m4DlaNiOSmWSbEcFcsxw6ZMTKzrdZA7PwSXvv8n9APAB33B</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Pham, Trong-Ton</creator><creator>Mulhem, Philippe</creator><creator>Maisonnasse, Loïc</creator><creator>Gaussier, Eric</creator><creator>Lim, Joo-Hwee</creator><general>Springer US</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3245-6462</orcidid><orcidid>https://orcid.org/0000-0002-8858-3233</orcidid></search><sort><creationdate>20120901</creationdate><title>Visual graph modeling for scene recognition and mobile robot localization</title><author>Pham, Trong-Ton ; Mulhem, Philippe ; Maisonnasse, Loïc ; Gaussier, Eric ; Lim, Joo-Hwee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-33e552a84bea79d4d3a01ad3e62825479cfd23a852e3a0a56a5d0dad563ca1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Graphs</topic><topic>Information Retrieval</topic><topic>Machine Learning</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Retrieval</topic><topic>Robots</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Support vector machines</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Trong-Ton</creatorcontrib><creatorcontrib>Mulhem, Philippe</creatorcontrib><creatorcontrib>Maisonnasse, Loïc</creatorcontrib><creatorcontrib>Gaussier, Eric</creatorcontrib><creatorcontrib>Lim, Joo-Hwee</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Trong-Ton</au><au>Mulhem, Philippe</au><au>Maisonnasse, Loïc</au><au>Gaussier, Eric</au><au>Lim, Joo-Hwee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual graph modeling for scene recognition and mobile robot localization</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>60</volume><issue>2</issue><spage>419</spage><epage>441</epage><pages>419-441</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Image retrieval and categorization may need to consider several types of visual features and spatial information between them (e.g., different point of views of an image). This paper presents a novel approach that exploits an extension of the language modeling approach from information retrieval to the problem of graph-based image retrieval and categorization. Such versatile graph model is needed to represent the multiple points of views of images. A language model is defined on such graphs to handle a fast graph matching. We present the experiments achieved with several instances of the proposed model on two collections of images: one composed of 3,849 touristic images and another composed of 3,633 images captured by a mobile robot. Experimental results show that using visual graph model (VGM) improves the accuracies of the results of the standard language model (LM) and outperforms the Support Vector Machine (SVM) method.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11042-010-0598-8</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3245-6462</orcidid><orcidid>https://orcid.org/0000-0002-8858-3233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2012-09, Vol.60 (2), p.419-441
issn 1380-7501
1573-7721
language eng
recordid cdi_hal_primary_oai_HAL_hal_00742059v1
source SpringerLink (Online service)
subjects Artificial Intelligence
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Graphs
Information Retrieval
Machine Learning
Multimedia
Multimedia Information Systems
Retrieval
Robots
Special Purpose and Application-Based Systems
Support vector machines
Visual
title Visual graph modeling for scene recognition and mobile robot localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20graph%20modeling%20for%20scene%20recognition%20and%20mobile%20robot%20localization&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Pham,%20Trong-Ton&rft.date=2012-09-01&rft.volume=60&rft.issue=2&rft.spage=419&rft.epage=441&rft.pages=419-441&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-010-0598-8&rft_dat=%3Cproquest_hal_p%3E1031316998%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031316998&rft_id=info:pmid/&rfr_iscdi=true