Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films

In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2010-05, Vol.19 (5), p.630-636
Hauptverfasser: Ghodbane, S., Ballutaud, D., Omnès, F., Agnès, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 5
container_start_page 630
container_title Diamond and related materials
container_volume 19
creator Ghodbane, S.
Ballutaud, D.
Omnès, F.
Agnès, C.
description In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5 × 10 16 < [B] < 1.5 × 10 19 cm − 3 ), high doping (1.5 × 10 19 < [B] < 3 × 10 20 cm − 3 ), heavy doping (3 × 10 20 < [B] < 2 × 10 21 cm − 3 ), and phase separation ([B] > 2 × 10 21 cm − 3 ). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges. A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (> C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is.
doi_str_mv 10.1016/j.diamond.2010.01.014
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00740947v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963510000348</els_id><sourcerecordid>753749504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</originalsourceid><addsrcrecordid>eNqFkW1rFDEQxxex4Fn7EYS8ERHcc2afYl5JOaotHFhQoe_CbB64nNnNmmyLh_S7m-WOvi0MzDD8Zv7J_IviLcIaAbtP-7V2NIRRryvIPcAczYtihZ-5KAG66mWxAlG1pejq9lXxOqU9AFaiwVXxexOGiaJLYWTBsnln2N3tD5Ymo-ZIzMYwsF0YgpncTH8defYPER8_5gTwyGjUbAr-oOIhzeS9Gw3rQwxjqcNkNDs9jFnnh_SmOLPkk7k45fPi19ern5vrcvv9283mcluqhuNcdtyatlYCO8HJ1L1teuoRDK9bW6HKZV91xoKugGvek0BF0CDnosZ2wc6LD8e9O_Jyim6geJCBnLy-3MqlB8AbEA1_wMy-P7JTDH_uTZrl4JIy3tNown2SvK15I1poMtkeSRVDStHYp9UIcvFB7uXpu3LxQQLmWObenRQoKfI20qhcehquqi4LYJu5L0fO5NM8OBNlUs6MymgXsxlSB_eM0n9Dqp_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753749504</pqid></control><display><type>article</type><title>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</title><source>Elsevier ScienceDirect Journals</source><creator>Ghodbane, S. ; Ballutaud, D. ; Omnès, F. ; Agnès, C.</creator><creatorcontrib>Ghodbane, S. ; Ballutaud, D. ; Omnès, F. ; Agnès, C.</creatorcontrib><description><![CDATA[In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5 × 10 16 < [B] < 1.5 × 10 19 cm − 3 ), high doping (1.5 × 10 19 < [B] < 3 × 10 20 cm − 3 ), heavy doping (3 × 10 20 < [B] < 2 × 10 21 cm − 3 ), and phase separation ([B] > 2 × 10 21 cm − 3 ). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges. A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (> C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is.]]></description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2010.01.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boron ; Boron doping ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; CVD diamond ; Diamond films ; Doping ; Engineering Sciences ; Ethers ; Evolution ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Materials ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Oxidation ; Physics ; Specific materials ; Spectra ; X-ray photoelectron spectroscopy ; XPS</subject><ispartof>Diamond and related materials, 2010-05, Vol.19 (5), p.630-636</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</citedby><cites>FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925963510000348$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22674915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00740947$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghodbane, S.</creatorcontrib><creatorcontrib>Ballutaud, D.</creatorcontrib><creatorcontrib>Omnès, F.</creatorcontrib><creatorcontrib>Agnès, C.</creatorcontrib><title>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</title><title>Diamond and related materials</title><description><![CDATA[In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5 × 10 16 < [B] < 1.5 × 10 19 cm − 3 ), high doping (1.5 × 10 19 < [B] < 3 × 10 20 cm − 3 ), heavy doping (3 × 10 20 < [B] < 2 × 10 21 cm − 3 ), and phase separation ([B] > 2 × 10 21 cm − 3 ). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges. A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (> C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is.]]></description><subject>Boron</subject><subject>Boron doping</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CVD diamond</subject><subject>Diamond films</subject><subject>Doping</subject><subject>Engineering Sciences</subject><subject>Ethers</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Materials</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Spectra</subject><subject>X-ray photoelectron spectroscopy</subject><subject>XPS</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkW1rFDEQxxex4Fn7EYS8ERHcc2afYl5JOaotHFhQoe_CbB64nNnNmmyLh_S7m-WOvi0MzDD8Zv7J_IviLcIaAbtP-7V2NIRRryvIPcAczYtihZ-5KAG66mWxAlG1pejq9lXxOqU9AFaiwVXxexOGiaJLYWTBsnln2N3tD5Ymo-ZIzMYwsF0YgpncTH8defYPER8_5gTwyGjUbAr-oOIhzeS9Gw3rQwxjqcNkNDs9jFnnh_SmOLPkk7k45fPi19ern5vrcvv9283mcluqhuNcdtyatlYCO8HJ1L1teuoRDK9bW6HKZV91xoKugGvek0BF0CDnosZ2wc6LD8e9O_Jyim6geJCBnLy-3MqlB8AbEA1_wMy-P7JTDH_uTZrl4JIy3tNown2SvK15I1poMtkeSRVDStHYp9UIcvFB7uXpu3LxQQLmWObenRQoKfI20qhcehquqi4LYJu5L0fO5NM8OBNlUs6MymgXsxlSB_eM0n9Dqp_4</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Ghodbane, S.</creator><creator>Ballutaud, D.</creator><creator>Omnès, F.</creator><creator>Agnès, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope></search><sort><creationdate>20100501</creationdate><title>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</title><author>Ghodbane, S. ; Ballutaud, D. ; Omnès, F. ; Agnès, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boron</topic><topic>Boron doping</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CVD diamond</topic><topic>Diamond films</topic><topic>Doping</topic><topic>Engineering Sciences</topic><topic>Ethers</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Materials</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Spectra</topic><topic>X-ray photoelectron spectroscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghodbane, S.</creatorcontrib><creatorcontrib>Ballutaud, D.</creatorcontrib><creatorcontrib>Omnès, F.</creatorcontrib><creatorcontrib>Agnès, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghodbane, S.</au><au>Ballutaud, D.</au><au>Omnès, F.</au><au>Agnès, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</atitle><jtitle>Diamond and related materials</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>19</volume><issue>5</issue><spage>630</spage><epage>636</epage><pages>630-636</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract><![CDATA[In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5 × 10 16 < [B] < 1.5 × 10 19 cm − 3 ), high doping (1.5 × 10 19 < [B] < 3 × 10 20 cm − 3 ), heavy doping (3 × 10 20 < [B] < 2 × 10 21 cm − 3 ), and phase separation ([B] > 2 × 10 21 cm − 3 ). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges. A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (> C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is.]]></abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2010.01.014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2010-05, Vol.19 (5), p.630-636
issn 0925-9635
1879-0062
language eng
recordid cdi_hal_primary_oai_HAL_hal_00740947v1
source Elsevier ScienceDirect Journals
subjects Boron
Boron doping
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
CVD diamond
Diamond films
Doping
Engineering Sciences
Ethers
Evolution
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Materials
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Oxidation
Physics
Specific materials
Spectra
X-ray photoelectron spectroscopy
XPS
title Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20XPS%20spectra%20from%20homoepitaxial%20%7B111%7D,%20%7B100%7D%20and%20polycrystalline%20boron-doped%20diamond%20films&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Ghodbane,%20S.&rft.date=2010-05-01&rft.volume=19&rft.issue=5&rft.spage=630&rft.epage=636&rft.pages=630-636&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2010.01.014&rft_dat=%3Cproquest_hal_p%3E753749504%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753749504&rft_id=info:pmid/&rft_els_id=S0925963510000348&rfr_iscdi=true