Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films
In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2010-05, Vol.19 (5), p.630-636 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 636 |
---|---|
container_issue | 5 |
container_start_page | 630 |
container_title | Diamond and related materials |
container_volume | 19 |
creator | Ghodbane, S. Ballutaud, D. Omnès, F. Agnès, C. |
description | In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5
×
10
16
<
[B]
<
1.5
×
10
19
cm
−
3
), high doping (1.5
×
10
19
<
[B]
<
3
×
10
20
cm
−
3
), heavy doping (3
×
10
20
<
[B]
<
2
×
10
21
cm
−
3
), and phase separation ([B]
>
2
×
10
21
cm
−
3
). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges.
A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH
x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (>
C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is. |
doi_str_mv | 10.1016/j.diamond.2010.01.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00740947v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963510000348</els_id><sourcerecordid>753749504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</originalsourceid><addsrcrecordid>eNqFkW1rFDEQxxex4Fn7EYS8ERHcc2afYl5JOaotHFhQoe_CbB64nNnNmmyLh_S7m-WOvi0MzDD8Zv7J_IviLcIaAbtP-7V2NIRRryvIPcAczYtihZ-5KAG66mWxAlG1pejq9lXxOqU9AFaiwVXxexOGiaJLYWTBsnln2N3tD5Ymo-ZIzMYwsF0YgpncTH8defYPER8_5gTwyGjUbAr-oOIhzeS9Gw3rQwxjqcNkNDs9jFnnh_SmOLPkk7k45fPi19ern5vrcvv9283mcluqhuNcdtyatlYCO8HJ1L1teuoRDK9bW6HKZV91xoKugGvek0BF0CDnosZ2wc6LD8e9O_Jyim6geJCBnLy-3MqlB8AbEA1_wMy-P7JTDH_uTZrl4JIy3tNown2SvK15I1poMtkeSRVDStHYp9UIcvFB7uXpu3LxQQLmWObenRQoKfI20qhcehquqi4LYJu5L0fO5NM8OBNlUs6MymgXsxlSB_eM0n9Dqp_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753749504</pqid></control><display><type>article</type><title>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</title><source>Elsevier ScienceDirect Journals</source><creator>Ghodbane, S. ; Ballutaud, D. ; Omnès, F. ; Agnès, C.</creator><creatorcontrib>Ghodbane, S. ; Ballutaud, D. ; Omnès, F. ; Agnès, C.</creatorcontrib><description><![CDATA[In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5
×
10
16
<
[B]
<
1.5
×
10
19
cm
−
3
), high doping (1.5
×
10
19
<
[B]
<
3
×
10
20
cm
−
3
), heavy doping (3
×
10
20
<
[B]
<
2
×
10
21
cm
−
3
), and phase separation ([B]
>
2
×
10
21
cm
−
3
). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges.
A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH
x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (>
C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is.]]></description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2010.01.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boron ; Boron doping ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; CVD diamond ; Diamond films ; Doping ; Engineering Sciences ; Ethers ; Evolution ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Materials ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Oxidation ; Physics ; Specific materials ; Spectra ; X-ray photoelectron spectroscopy ; XPS</subject><ispartof>Diamond and related materials, 2010-05, Vol.19 (5), p.630-636</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</citedby><cites>FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925963510000348$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22674915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00740947$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghodbane, S.</creatorcontrib><creatorcontrib>Ballutaud, D.</creatorcontrib><creatorcontrib>Omnès, F.</creatorcontrib><creatorcontrib>Agnès, C.</creatorcontrib><title>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</title><title>Diamond and related materials</title><description><![CDATA[In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5
×
10
16
<
[B]
<
1.5
×
10
19
cm
−
3
), high doping (1.5
×
10
19
<
[B]
<
3
×
10
20
cm
−
3
), heavy doping (3
×
10
20
<
[B]
<
2
×
10
21
cm
−
3
), and phase separation ([B]
>
2
×
10
21
cm
−
3
). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges.
A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH
x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (>
C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is.]]></description><subject>Boron</subject><subject>Boron doping</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CVD diamond</subject><subject>Diamond films</subject><subject>Doping</subject><subject>Engineering Sciences</subject><subject>Ethers</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Materials</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Spectra</subject><subject>X-ray photoelectron spectroscopy</subject><subject>XPS</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkW1rFDEQxxex4Fn7EYS8ERHcc2afYl5JOaotHFhQoe_CbB64nNnNmmyLh_S7m-WOvi0MzDD8Zv7J_IviLcIaAbtP-7V2NIRRryvIPcAczYtihZ-5KAG66mWxAlG1pejq9lXxOqU9AFaiwVXxexOGiaJLYWTBsnln2N3tD5Ymo-ZIzMYwsF0YgpncTH8defYPER8_5gTwyGjUbAr-oOIhzeS9Gw3rQwxjqcNkNDs9jFnnh_SmOLPkk7k45fPi19ern5vrcvv9283mcluqhuNcdtyatlYCO8HJ1L1teuoRDK9bW6HKZV91xoKugGvek0BF0CDnosZ2wc6LD8e9O_Jyim6geJCBnLy-3MqlB8AbEA1_wMy-P7JTDH_uTZrl4JIy3tNown2SvK15I1poMtkeSRVDStHYp9UIcvFB7uXpu3LxQQLmWObenRQoKfI20qhcehquqi4LYJu5L0fO5NM8OBNlUs6MymgXsxlSB_eM0n9Dqp_4</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Ghodbane, S.</creator><creator>Ballutaud, D.</creator><creator>Omnès, F.</creator><creator>Agnès, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope></search><sort><creationdate>20100501</creationdate><title>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</title><author>Ghodbane, S. ; Ballutaud, D. ; Omnès, F. ; Agnès, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-67fe53c91697ae3bf4bab10e735f21cb10b26ef0d207d7ba91ca0417793150e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boron</topic><topic>Boron doping</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CVD diamond</topic><topic>Diamond films</topic><topic>Doping</topic><topic>Engineering Sciences</topic><topic>Ethers</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Materials</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Spectra</topic><topic>X-ray photoelectron spectroscopy</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghodbane, S.</creatorcontrib><creatorcontrib>Ballutaud, D.</creatorcontrib><creatorcontrib>Omnès, F.</creatorcontrib><creatorcontrib>Agnès, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghodbane, S.</au><au>Ballutaud, D.</au><au>Omnès, F.</au><au>Agnès, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films</atitle><jtitle>Diamond and related materials</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>19</volume><issue>5</issue><spage>630</spage><epage>636</epage><pages>630-636</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract><![CDATA[In this work, we have used X-ray photoelectron spectroscopy (XPS) to investigate the nature of surface adsorbed species and their sensitivity to the boron concentration [B] in two sets of as-grown diamond films: homoepitaxial {111} and polycrystalline. These sets cover each one at least three of the four doping ranges: low doping (5
×
10
16
<
[B]
<
1.5
×
10
19
cm
−
3
), high doping (1.5
×
10
19
<
[B]
<
3
×
10
20
cm
−
3
), heavy doping (3
×
10
20
<
[B]
<
2
×
10
21
cm
−
3
), and phase separation ([B]
>
2
×
10
21
cm
−
3
). The results are compared to those we have previously obtained on {100} homoepitaxial films in the same doping ranges.
A detailed description of both the nature and the relative concentrations of the main surface chemical species on every set of films is reported. Besides the usual CH
x bonds on the diamond surface, the following oxygen-related groups: Ether (C–O–C), hydroxyl (C–OH, only on polycrystalline films), carbonyl (>
C=O) and carboxyl (HO–C=O) have been found on the surface of grown diamond films, upon spontaneous oxidation under air (no oxidation treatment has been applied). The evolution of each surface chemical group according to the boron concentration in the films is.]]></abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2010.01.014</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2010-05, Vol.19 (5), p.630-636 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00740947v1 |
source | Elsevier ScienceDirect Journals |
subjects | Boron Boron doping Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology CVD diamond Diamond films Doping Engineering Sciences Ethers Evolution Exact sciences and technology Fullerenes and related materials diamonds, graphite Materials Materials science Methods of deposition of films and coatings film growth and epitaxy Oxidation Physics Specific materials Spectra X-ray photoelectron spectroscopy XPS |
title | Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20XPS%20spectra%20from%20homoepitaxial%20%7B111%7D,%20%7B100%7D%20and%20polycrystalline%20boron-doped%20diamond%20films&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Ghodbane,%20S.&rft.date=2010-05-01&rft.volume=19&rft.issue=5&rft.spage=630&rft.epage=636&rft.pages=630-636&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2010.01.014&rft_dat=%3Cproquest_hal_p%3E753749504%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753749504&rft_id=info:pmid/&rft_els_id=S0925963510000348&rfr_iscdi=true |