Simplicial simple-homotopy of flag complexes in terms of graphs

A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2010, Vol.31 (1), p.161-176
Hauptverfasser: Boulet, Romain, Fieux, Etienne, Jouve, Bertrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 1
container_start_page 161
container_title European journal of combinatorics
container_volume 31
creator Boulet, Romain
Fieux, Etienne
Jouve, Bertrand
description A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type. This result is closely related to similar results established by Barmak and Minian [J.A. Barmak, E.G. Minian, Simple homotopy types and finite spaces, Adv. Math. 218 (1) (2008) 87–104. doi:10.1016/j.aim.2007.11.019] in the framework of posets and we give the relation between the two approaches. We conclude with a question about the relation between the s-homotopy and the graph homotopy defined in [B. Chen, S.-T. Yau, Y.-N. Yeh, Graph homotopy and Graham homotopy, Selected papers in honor of Helge Tverberg, Discrete Math. 241 (1-3) (2001) 153–170. doi:10.1016/S0012-365X(01)00115-7.]
doi_str_mv 10.1016/j.ejc.2009.05.003
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00740434v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669809001309</els_id><sourcerecordid>S0195669809001309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-868e2f385636e684e0247f03678361e176681b6666c1ebedc949455a3cea83e23</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLdcPSTOZDebDR6kFLVCwYN6XrbbSbsh6YbdUPTfm1Dx6FxmePO-gXmM3SJkCCjvm4wam-UAVQZFBsDP2AyhKtKqKvGczQDHWcpKXbKrGBsAxILzGXt8d13fOutMm8RppHTvOz_4_jvxdVK3ZpdYP-lfFBN3SAYKXZxWu2D6fbxmF7VpI9389jn7fH76WK7S9dvL63KxTi0vxZAqqSivuSoklySVIMhFWQOXpeISCUspFW7kWBZpQ1tbiUoUheGWjOKU8zm7O93dm1b3wXUmfGtvnF4t1nrSAEoBgosjjl48eW3wMQaq_wAEPaWlGz2mpae0NBQjykfm4cTQ-MTRUdDROjpY2rpAdtBb7_6hfwAxEnB1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simplicial simple-homotopy of flag complexes in terms of graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Boulet, Romain ; Fieux, Etienne ; Jouve, Bertrand</creator><creatorcontrib>Boulet, Romain ; Fieux, Etienne ; Jouve, Bertrand</creatorcontrib><description>A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type. This result is closely related to similar results established by Barmak and Minian [J.A. Barmak, E.G. Minian, Simple homotopy types and finite spaces, Adv. Math. 218 (1) (2008) 87–104. doi:10.1016/j.aim.2007.11.019] in the framework of posets and we give the relation between the two approaches. We conclude with a question about the relation between the s-homotopy and the graph homotopy defined in [B. Chen, S.-T. Yau, Y.-N. Yeh, Graph homotopy and Graham homotopy, Selected papers in honor of Helge Tverberg, Discrete Math. 241 (1-3) (2001) 153–170. doi:10.1016/S0012-365X(01)00115-7.]</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1016/j.ejc.2009.05.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>General Mathematics ; Mathematics</subject><ispartof>European journal of combinatorics, 2010, Vol.31 (1), p.161-176</ispartof><rights>2009 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-868e2f385636e684e0247f03678361e176681b6666c1ebedc949455a3cea83e23</citedby><cites>FETCH-LOGICAL-c374t-868e2f385636e684e0247f03678361e176681b6666c1ebedc949455a3cea83e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0195669809001309$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00740434$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulet, Romain</creatorcontrib><creatorcontrib>Fieux, Etienne</creatorcontrib><creatorcontrib>Jouve, Bertrand</creatorcontrib><title>Simplicial simple-homotopy of flag complexes in terms of graphs</title><title>European journal of combinatorics</title><description>A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type. This result is closely related to similar results established by Barmak and Minian [J.A. Barmak, E.G. Minian, Simple homotopy types and finite spaces, Adv. Math. 218 (1) (2008) 87–104. doi:10.1016/j.aim.2007.11.019] in the framework of posets and we give the relation between the two approaches. We conclude with a question about the relation between the s-homotopy and the graph homotopy defined in [B. Chen, S.-T. Yau, Y.-N. Yeh, Graph homotopy and Graham homotopy, Selected papers in honor of Helge Tverberg, Discrete Math. 241 (1-3) (2001) 153–170. doi:10.1016/S0012-365X(01)00115-7.]</description><subject>General Mathematics</subject><subject>Mathematics</subject><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLdcPSTOZDebDR6kFLVCwYN6XrbbSbsh6YbdUPTfm1Dx6FxmePO-gXmM3SJkCCjvm4wam-UAVQZFBsDP2AyhKtKqKvGczQDHWcpKXbKrGBsAxILzGXt8d13fOutMm8RppHTvOz_4_jvxdVK3ZpdYP-lfFBN3SAYKXZxWu2D6fbxmF7VpI9389jn7fH76WK7S9dvL63KxTi0vxZAqqSivuSoklySVIMhFWQOXpeISCUspFW7kWBZpQ1tbiUoUheGWjOKU8zm7O93dm1b3wXUmfGtvnF4t1nrSAEoBgosjjl48eW3wMQaq_wAEPaWlGz2mpae0NBQjykfm4cTQ-MTRUdDROjpY2rpAdtBb7_6hfwAxEnB1</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Boulet, Romain</creator><creator>Fieux, Etienne</creator><creator>Jouve, Bertrand</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2010</creationdate><title>Simplicial simple-homotopy of flag complexes in terms of graphs</title><author>Boulet, Romain ; Fieux, Etienne ; Jouve, Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-868e2f385636e684e0247f03678361e176681b6666c1ebedc949455a3cea83e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>General Mathematics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulet, Romain</creatorcontrib><creatorcontrib>Fieux, Etienne</creatorcontrib><creatorcontrib>Jouve, Bertrand</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulet, Romain</au><au>Fieux, Etienne</au><au>Jouve, Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplicial simple-homotopy of flag complexes in terms of graphs</atitle><jtitle>European journal of combinatorics</jtitle><date>2010</date><risdate>2010</risdate><volume>31</volume><issue>1</issue><spage>161</spage><epage>176</epage><pages>161-176</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type. This result is closely related to similar results established by Barmak and Minian [J.A. Barmak, E.G. Minian, Simple homotopy types and finite spaces, Adv. Math. 218 (1) (2008) 87–104. doi:10.1016/j.aim.2007.11.019] in the framework of posets and we give the relation between the two approaches. We conclude with a question about the relation between the s-homotopy and the graph homotopy defined in [B. Chen, S.-T. Yau, Y.-N. Yeh, Graph homotopy and Graham homotopy, Selected papers in honor of Helge Tverberg, Discrete Math. 241 (1-3) (2001) 153–170. doi:10.1016/S0012-365X(01)00115-7.]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ejc.2009.05.003</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6698
ispartof European journal of combinatorics, 2010, Vol.31 (1), p.161-176
issn 0195-6698
1095-9971
language eng
recordid cdi_hal_primary_oai_HAL_hal_00740434v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects General Mathematics
Mathematics
title Simplicial simple-homotopy of flag complexes in terms of graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplicial%20simple-homotopy%20of%20flag%20complexes%20in%20terms%20of%20graphs&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Boulet,%20Romain&rft.date=2010&rft.volume=31&rft.issue=1&rft.spage=161&rft.epage=176&rft.pages=161-176&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1016/j.ejc.2009.05.003&rft_dat=%3Celsevier_hal_p%3ES0195669809001309%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0195669809001309&rfr_iscdi=true