Phase-field approach for faceted solidification

We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma plot with rounded cusps that can approach arbitrarily closely the true gamma plot with sharp cusps that correspond to faceted orientations. The phase-field equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-10, Vol.68 (4 Pt 1), p.041604-041604, Article 041604
Hauptverfasser: Debierre, Jean-Marc, Karma, Alain, Celestini, Franck, Guérin, Rahma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 041604
container_issue 4 Pt 1
container_start_page 041604
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 68
creator Debierre, Jean-Marc
Karma, Alain
Celestini, Franck
Guérin, Rahma
description We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma plot with rounded cusps that can approach arbitrarily closely the true gamma plot with sharp cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit with local equilibrium at the solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplitude delta for a gamma plot of the form gamma=gamma0[1+delta(/sin theta/+/cos theta/)]. The phase-field results are consistent with the scaling law Lambda approximately V(-1/2) observed experimentally, where Lambda is the facet length and V is the growth rate. In addition, the variation of V and Lambda with delta is found to be reasonably well predicted by an approximate sharp-interface analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and trailing rough parts of the needle crystal, respectively.
doi_str_mv 10.1103/physreve.68.041604
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00737470v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71475399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-528d746e53d6cec8889ee4545374c143b1b866a3c29da23fe4588e82f6c8bfb53</originalsourceid><addsrcrecordid>eNpFkE9Lw0AQxRdRbK1-AQ-Sk-Ah7W72b46lVCsULKLnZbOZJStpE7Npod--W1L0NI-Z9x7DD6FHgqeEYDprq2Po4ABToaaYEYHZFRoTnPOUSiWvo-Y0j5rzEboL4QdjmlHFbtGIMKGynOMxmm0qEyB1HuoyMW3bNcZWiWu6xBkLPZRJaGpfeuet6X2zu0c3ztQBHi5zgr5fl1-LVbr-eHtfzNepZSLvU56pUjIBnJbCglVK5QCMM04ls4TRghRKCENtlpcmoy7elAKVOWFV4QpOJ-hl6K1MrdvOb0131I3xejVf6_MOYxm7JD6Q6H0evPH73z2EXm99sFDXZgfNPmhJmIwk8mjMBqPtmhDRub9mgvUZqd5EpJ9wWGqh9IA0hp4u7ftiC-V_5MKQngD7UHJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71475399</pqid></control><display><type>article</type><title>Phase-field approach for faceted solidification</title><source>American Physical Society Journals</source><creator>Debierre, Jean-Marc ; Karma, Alain ; Celestini, Franck ; Guérin, Rahma</creator><creatorcontrib>Debierre, Jean-Marc ; Karma, Alain ; Celestini, Franck ; Guérin, Rahma</creatorcontrib><description>We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma plot with rounded cusps that can approach arbitrarily closely the true gamma plot with sharp cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit with local equilibrium at the solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplitude delta for a gamma plot of the form gamma=gamma0[1+delta(/sin theta/+/cos theta/)]. The phase-field results are consistent with the scaling law Lambda approximately V(-1/2) observed experimentally, where Lambda is the facet length and V is the growth rate. In addition, the variation of V and Lambda with delta is found to be reasonably well predicted by an approximate sharp-interface analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and trailing rough parts of the needle crystal, respectively.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/physreve.68.041604</identifier><identifier>PMID: 14682950</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-10, Vol.68 (4 Pt 1), p.041604-041604, Article 041604</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-528d746e53d6cec8889ee4545374c143b1b866a3c29da23fe4588e82f6c8bfb53</citedby><cites>FETCH-LOGICAL-c469t-528d746e53d6cec8889ee4545374c143b1b866a3c29da23fe4588e82f6c8bfb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14682950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00737470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Debierre, Jean-Marc</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><creatorcontrib>Celestini, Franck</creatorcontrib><creatorcontrib>Guérin, Rahma</creatorcontrib><title>Phase-field approach for faceted solidification</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma plot with rounded cusps that can approach arbitrarily closely the true gamma plot with sharp cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit with local equilibrium at the solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplitude delta for a gamma plot of the form gamma=gamma0[1+delta(/sin theta/+/cos theta/)]. The phase-field results are consistent with the scaling law Lambda approximately V(-1/2) observed experimentally, where Lambda is the facet length and V is the growth rate. In addition, the variation of V and Lambda with delta is found to be reasonably well predicted by an approximate sharp-interface analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and trailing rough parts of the needle crystal, respectively.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkE9Lw0AQxRdRbK1-AQ-Sk-Ah7W72b46lVCsULKLnZbOZJStpE7Npod--W1L0NI-Z9x7DD6FHgqeEYDprq2Po4ABToaaYEYHZFRoTnPOUSiWvo-Y0j5rzEboL4QdjmlHFbtGIMKGynOMxmm0qEyB1HuoyMW3bNcZWiWu6xBkLPZRJaGpfeuet6X2zu0c3ztQBHi5zgr5fl1-LVbr-eHtfzNepZSLvU56pUjIBnJbCglVK5QCMM04ls4TRghRKCENtlpcmoy7elAKVOWFV4QpOJ-hl6K1MrdvOb0131I3xejVf6_MOYxm7JD6Q6H0evPH73z2EXm99sFDXZgfNPmhJmIwk8mjMBqPtmhDRub9mgvUZqd5EpJ9wWGqh9IA0hp4u7ftiC-V_5MKQngD7UHJM</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Debierre, Jean-Marc</creator><creator>Karma, Alain</creator><creator>Celestini, Franck</creator><creator>Guérin, Rahma</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20031001</creationdate><title>Phase-field approach for faceted solidification</title><author>Debierre, Jean-Marc ; Karma, Alain ; Celestini, Franck ; Guérin, Rahma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-528d746e53d6cec8889ee4545374c143b1b866a3c29da23fe4588e82f6c8bfb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Debierre, Jean-Marc</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><creatorcontrib>Celestini, Franck</creatorcontrib><creatorcontrib>Guérin, Rahma</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debierre, Jean-Marc</au><au>Karma, Alain</au><au>Celestini, Franck</au><au>Guérin, Rahma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field approach for faceted solidification</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>68</volume><issue>4 Pt 1</issue><spage>041604</spage><epage>041604</epage><pages>041604-041604</pages><artnum>041604</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><eissn>1550-2376</eissn><abstract>We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma plot with rounded cusps that can approach arbitrarily closely the true gamma plot with sharp cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit with local equilibrium at the solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplitude delta for a gamma plot of the form gamma=gamma0[1+delta(/sin theta/+/cos theta/)]. The phase-field results are consistent with the scaling law Lambda approximately V(-1/2) observed experimentally, where Lambda is the facet length and V is the growth rate. In addition, the variation of V and Lambda with delta is found to be reasonably well predicted by an approximate sharp-interface analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and trailing rough parts of the needle crystal, respectively.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>14682950</pmid><doi>10.1103/physreve.68.041604</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-10, Vol.68 (4 Pt 1), p.041604-041604, Article 041604
issn 1539-3755
1063-651X
1095-3787
1550-2376
language eng
recordid cdi_hal_primary_oai_HAL_hal_00737470v1
source American Physical Society Journals
subjects Condensed Matter
Materials Science
Physics
title Phase-field approach for faceted solidification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20approach%20for%20faceted%20solidification&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Debierre,%20Jean-Marc&rft.date=2003-10-01&rft.volume=68&rft.issue=4%20Pt%201&rft.spage=041604&rft.epage=041604&rft.pages=041604-041604&rft.artnum=041604&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/physreve.68.041604&rft_dat=%3Cproquest_hal_p%3E71475399%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71475399&rft_id=info:pmid/14682950&rfr_iscdi=true