Quantum speed-up for unsupervised learning

We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2013-02, Vol.90 (2), p.261-287
Hauptverfasser: Aïmeur, Esma, Brassard, Gilles, Gambs, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 2
container_start_page 261
container_title Machine learning
container_volume 90
creator Aïmeur, Esma
Brassard, Gilles
Gambs, Sébastien
description We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and k -medians that are faster than their classical analogues. We also describe a distributed version of k -medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.
doi_str_mv 10.1007/s10994-012-5316-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00736948v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448748409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</originalsourceid><addsrcrecordid>eNqNkVtLxDAQhYMouK7-AN8WRFAhmkkyuTyKeIMFEfQ5pG2qlW5bk-2C_96Wiogg-DQw853DHA4hh8DOgTF9kYBZKykDTlGAorhFZoBaUIYKt8mMGYNUAcddspfSG2OMK6Nm5Oyx9826Xy1SF0JB-25RtnHRN6nvQtxUKRSLOvjYVM3LPtkpfZ3Cwdeck-eb66erO7p8uL2_ulzSXBq7prnPyiITSkrGfeBZZkB6gaLIrPWgDfqCGa28BF4AmEwwIzlKhRhkyQsl5uR08n31tetitfLxw7W-cneXSzfuhrxCWWk2MLAnE9vF9r0Pae1WVcpDXfsmtH1yoFEgSsv-gUpptDSS2QE9-oW-tX1shtADBVxqhYPvnMBE5bFNKYby-1lgbizFTaW4oRQ3luJGzfGXs0-5r8vom7xK30KuUSltR45PXBpOzUuIPz740_wT1C2YBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412476575</pqid></control><display><type>article</type><title>Quantum speed-up for unsupervised learning</title><source>SpringerNature Journals</source><creator>Aïmeur, Esma ; Brassard, Gilles ; Gambs, Sébastien</creator><creatorcontrib>Aïmeur, Esma ; Brassard, Gilles ; Gambs, Sébastien</creatorcontrib><description>We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and k -medians that are faster than their classical analogues. We also describe a distributed version of k -medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-012-5316-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial Intelligence ; Classical and quantum physics: mechanics and fields ; Cluster analysis ; Clustering ; Clusters ; Computer Science ; Computer science; control theory; systems ; Construction costs ; Control ; Cost engineering ; Counting ; Cryptography and Security ; Exact sciences and technology ; Graph theory ; Information retrieval. Graph ; Learning ; Mechatronics ; Natural Language Processing (NLP) ; Physics ; Quantum computation ; Quantum information ; Quantum theory ; Robotics ; Simulation and Modeling ; Theoretical computing</subject><ispartof>Machine learning, 2013-02, Vol.90 (2), p.261-287</ispartof><rights>The Author(s) 2012</rights><rights>2014 INIST-CNRS</rights><rights>The Author(s) 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</citedby><cites>FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-012-5316-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-012-5316-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27566795$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00736948$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aïmeur, Esma</creatorcontrib><creatorcontrib>Brassard, Gilles</creatorcontrib><creatorcontrib>Gambs, Sébastien</creatorcontrib><title>Quantum speed-up for unsupervised learning</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and k -medians that are faster than their classical analogues. We also describe a distributed version of k -medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Construction costs</subject><subject>Control</subject><subject>Cost engineering</subject><subject>Counting</subject><subject>Cryptography and Security</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Physics</subject><subject>Quantum computation</subject><subject>Quantum information</subject><subject>Quantum theory</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Theoretical computing</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkVtLxDAQhYMouK7-AN8WRFAhmkkyuTyKeIMFEfQ5pG2qlW5bk-2C_96Wiogg-DQw853DHA4hh8DOgTF9kYBZKykDTlGAorhFZoBaUIYKt8mMGYNUAcddspfSG2OMK6Nm5Oyx9826Xy1SF0JB-25RtnHRN6nvQtxUKRSLOvjYVM3LPtkpfZ3Cwdeck-eb66erO7p8uL2_ulzSXBq7prnPyiITSkrGfeBZZkB6gaLIrPWgDfqCGa28BF4AmEwwIzlKhRhkyQsl5uR08n31tetitfLxw7W-cneXSzfuhrxCWWk2MLAnE9vF9r0Pae1WVcpDXfsmtH1yoFEgSsv-gUpptDSS2QE9-oW-tX1shtADBVxqhYPvnMBE5bFNKYby-1lgbizFTaW4oRQ3luJGzfGXs0-5r8vom7xK30KuUSltR45PXBpOzUuIPz740_wT1C2YBw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Aïmeur, Esma</creator><creator>Brassard, Gilles</creator><creator>Gambs, Sébastien</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7U5</scope><scope>1XC</scope></search><sort><creationdate>20130201</creationdate><title>Quantum speed-up for unsupervised learning</title><author>Aïmeur, Esma ; Brassard, Gilles ; Gambs, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Construction costs</topic><topic>Control</topic><topic>Cost engineering</topic><topic>Counting</topic><topic>Cryptography and Security</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Physics</topic><topic>Quantum computation</topic><topic>Quantum information</topic><topic>Quantum theory</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aïmeur, Esma</creatorcontrib><creatorcontrib>Brassard, Gilles</creatorcontrib><creatorcontrib>Gambs, Sébastien</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aïmeur, Esma</au><au>Brassard, Gilles</au><au>Gambs, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum speed-up for unsupervised learning</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>90</volume><issue>2</issue><spage>261</spage><epage>287</epage><pages>261-287</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and k -medians that are faster than their classical analogues. We also describe a distributed version of k -medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10994-012-5316-5</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2013-02, Vol.90 (2), p.261-287
issn 0885-6125
1573-0565
language eng
recordid cdi_hal_primary_oai_HAL_hal_00736948v1
source SpringerNature Journals
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial Intelligence
Classical and quantum physics: mechanics and fields
Cluster analysis
Clustering
Clusters
Computer Science
Computer science
control theory
systems
Construction costs
Control
Cost engineering
Counting
Cryptography and Security
Exact sciences and technology
Graph theory
Information retrieval. Graph
Learning
Mechatronics
Natural Language Processing (NLP)
Physics
Quantum computation
Quantum information
Quantum theory
Robotics
Simulation and Modeling
Theoretical computing
title Quantum speed-up for unsupervised learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20speed-up%20for%20unsupervised%20learning&rft.jtitle=Machine%20learning&rft.au=A%C3%AFmeur,%20Esma&rft.date=2013-02-01&rft.volume=90&rft.issue=2&rft.spage=261&rft.epage=287&rft.pages=261-287&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-012-5316-5&rft_dat=%3Cproquest_hal_p%3E1448748409%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412476575&rft_id=info:pmid/&rfr_iscdi=true