Quantum speed-up for unsupervised learning
We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algori...
Gespeichert in:
Veröffentlicht in: | Machine learning 2013-02, Vol.90 (2), p.261-287 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 2 |
container_start_page | 261 |
container_title | Machine learning |
container_volume | 90 |
creator | Aïmeur, Esma Brassard, Gilles Gambs, Sébastien |
description | We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and
k
-medians that are faster than their classical analogues. We also describe a distributed version of
k
-medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres. |
doi_str_mv | 10.1007/s10994-012-5316-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00736948v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448748409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</originalsourceid><addsrcrecordid>eNqNkVtLxDAQhYMouK7-AN8WRFAhmkkyuTyKeIMFEfQ5pG2qlW5bk-2C_96Wiogg-DQw853DHA4hh8DOgTF9kYBZKykDTlGAorhFZoBaUIYKt8mMGYNUAcddspfSG2OMK6Nm5Oyx9826Xy1SF0JB-25RtnHRN6nvQtxUKRSLOvjYVM3LPtkpfZ3Cwdeck-eb66erO7p8uL2_ulzSXBq7prnPyiITSkrGfeBZZkB6gaLIrPWgDfqCGa28BF4AmEwwIzlKhRhkyQsl5uR08n31tetitfLxw7W-cneXSzfuhrxCWWk2MLAnE9vF9r0Pae1WVcpDXfsmtH1yoFEgSsv-gUpptDSS2QE9-oW-tX1shtADBVxqhYPvnMBE5bFNKYby-1lgbizFTaW4oRQ3luJGzfGXs0-5r8vom7xK30KuUSltR45PXBpOzUuIPz740_wT1C2YBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412476575</pqid></control><display><type>article</type><title>Quantum speed-up for unsupervised learning</title><source>SpringerNature Journals</source><creator>Aïmeur, Esma ; Brassard, Gilles ; Gambs, Sébastien</creator><creatorcontrib>Aïmeur, Esma ; Brassard, Gilles ; Gambs, Sébastien</creatorcontrib><description>We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and
k
-medians that are faster than their classical analogues. We also describe a distributed version of
k
-medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-012-5316-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial Intelligence ; Classical and quantum physics: mechanics and fields ; Cluster analysis ; Clustering ; Clusters ; Computer Science ; Computer science; control theory; systems ; Construction costs ; Control ; Cost engineering ; Counting ; Cryptography and Security ; Exact sciences and technology ; Graph theory ; Information retrieval. Graph ; Learning ; Mechatronics ; Natural Language Processing (NLP) ; Physics ; Quantum computation ; Quantum information ; Quantum theory ; Robotics ; Simulation and Modeling ; Theoretical computing</subject><ispartof>Machine learning, 2013-02, Vol.90 (2), p.261-287</ispartof><rights>The Author(s) 2012</rights><rights>2014 INIST-CNRS</rights><rights>The Author(s) 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</citedby><cites>FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-012-5316-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-012-5316-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27566795$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00736948$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aïmeur, Esma</creatorcontrib><creatorcontrib>Brassard, Gilles</creatorcontrib><creatorcontrib>Gambs, Sébastien</creatorcontrib><title>Quantum speed-up for unsupervised learning</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and
k
-medians that are faster than their classical analogues. We also describe a distributed version of
k
-medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Construction costs</subject><subject>Control</subject><subject>Cost engineering</subject><subject>Counting</subject><subject>Cryptography and Security</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Information retrieval. Graph</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Physics</subject><subject>Quantum computation</subject><subject>Quantum information</subject><subject>Quantum theory</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Theoretical computing</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkVtLxDAQhYMouK7-AN8WRFAhmkkyuTyKeIMFEfQ5pG2qlW5bk-2C_96Wiogg-DQw853DHA4hh8DOgTF9kYBZKykDTlGAorhFZoBaUIYKt8mMGYNUAcddspfSG2OMK6Nm5Oyx9826Xy1SF0JB-25RtnHRN6nvQtxUKRSLOvjYVM3LPtkpfZ3Cwdeck-eb66erO7p8uL2_ulzSXBq7prnPyiITSkrGfeBZZkB6gaLIrPWgDfqCGa28BF4AmEwwIzlKhRhkyQsl5uR08n31tetitfLxw7W-cneXSzfuhrxCWWk2MLAnE9vF9r0Pae1WVcpDXfsmtH1yoFEgSsv-gUpptDSS2QE9-oW-tX1shtADBVxqhYPvnMBE5bFNKYby-1lgbizFTaW4oRQ3luJGzfGXs0-5r8vom7xK30KuUSltR45PXBpOzUuIPz740_wT1C2YBw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Aïmeur, Esma</creator><creator>Brassard, Gilles</creator><creator>Gambs, Sébastien</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7U5</scope><scope>1XC</scope></search><sort><creationdate>20130201</creationdate><title>Quantum speed-up for unsupervised learning</title><author>Aïmeur, Esma ; Brassard, Gilles ; Gambs, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-cabfdb364402ae2bb814a353db99a1785ad0876a412d118b3084254655e4f2d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Construction costs</topic><topic>Control</topic><topic>Cost engineering</topic><topic>Counting</topic><topic>Cryptography and Security</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Information retrieval. Graph</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Physics</topic><topic>Quantum computation</topic><topic>Quantum information</topic><topic>Quantum theory</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aïmeur, Esma</creatorcontrib><creatorcontrib>Brassard, Gilles</creatorcontrib><creatorcontrib>Gambs, Sébastien</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aïmeur, Esma</au><au>Brassard, Gilles</au><au>Gambs, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum speed-up for unsupervised learning</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>90</volume><issue>2</issue><spage>261</spage><epage>287</epage><pages>261-287</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and
k
-medians that are faster than their classical analogues. We also describe a distributed version of
k
-medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10994-012-5316-5</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2013-02, Vol.90 (2), p.261-287 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00736948v1 |
source | SpringerNature Journals |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial Intelligence Classical and quantum physics: mechanics and fields Cluster analysis Clustering Clusters Computer Science Computer science control theory systems Construction costs Control Cost engineering Counting Cryptography and Security Exact sciences and technology Graph theory Information retrieval. Graph Learning Mechatronics Natural Language Processing (NLP) Physics Quantum computation Quantum information Quantum theory Robotics Simulation and Modeling Theoretical computing |
title | Quantum speed-up for unsupervised learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20speed-up%20for%20unsupervised%20learning&rft.jtitle=Machine%20learning&rft.au=A%C3%AFmeur,%20Esma&rft.date=2013-02-01&rft.volume=90&rft.issue=2&rft.spage=261&rft.epage=287&rft.pages=261-287&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-012-5316-5&rft_dat=%3Cproquest_hal_p%3E1448748409%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412476575&rft_id=info:pmid/&rfr_iscdi=true |