miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors

The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2012-05, Vol.22 (5), p.1052-1064
Hauptverfasser: Coolen, Marion, Thieffry, Denis, Drivenes, Øyvind, Becker, Thomas S., Bally-Cuif, Laure
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 5
container_start_page 1052
container_title Developmental cell
container_volume 22
creator Coolen, Marion
Thieffry, Denis
Drivenes, Øyvind
Becker, Thomas S.
Bally-Cuif, Laure
description The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis. ► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis.
doi_str_mv 10.1016/j.devcel.2012.03.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00732227v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580712001268</els_id><sourcerecordid>1015094503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</originalsourceid><addsrcrecordid>eNqFkV2P1CAYhRvjxl1X_4ExvTHRi9b3pdDCjclkdD-SyZqY9ZpQSmeYdGCFdhL_vXQ77t7pDRB4DhzOybJ3CCUC1p_3ZWeO2gwlASQlVCVA9SK7QN7wAhnDl2nNKlowDs159jrGPSQZcniVnRPCBKub-iKTB_ujEPnauzH4IebjzuT39mDdNvd9fmem4LfGmWjno-Cn7e4R-WqD0WN-63a2taP1bqZXblRb72wcrc6vlB59iG-ys14N0bw9zZfZz6tv9-ubYvP9-na92hSaNTgWqLq2b5XWmiPhXJGaEKw5pU1LBXIBCNpgXXeMa42cVoSiaZkiCjTXilSX2afl3p0a5EOwBxV-S6-svFlt5LwH0FSEkOaIif24sA_B_5pMHFMIMSU5KGf8FCVWQog0UPF_FJCBoAyqhNIF1cHHGEz_ZANh5mq5l0tjcm5MQpU8zbL3pxem9mC6J9HfihLw4QSoqNXQB-W0jc8cE7Rp2PyrLwtnUsxHa4KM2hqnTffYley8_beTP7jhs-k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015094503</pqid></control><display><type>article</type><title>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Coolen, Marion ; Thieffry, Denis ; Drivenes, Øyvind ; Becker, Thomas S. ; Bally-Cuif, Laure</creator><creatorcontrib>Coolen, Marion ; Thieffry, Denis ; Drivenes, Øyvind ; Becker, Thomas S. ; Bally-Cuif, Laure</creatorcontrib><description>The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis. ► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2012.03.003</identifier><identifier>PMID: 22595676</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Alanine ; Alanine - analogs &amp; derivatives ; Alanine - pharmacology ; Animals ; Azepines ; Azepines - pharmacology ; Basic Helix-Loop-Helix Transcription Factors ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological and medical sciences ; Cell Cycle ; Cell Cycle - genetics ; Cell Cycle - physiology ; Cell Differentiation ; Cell Differentiation - physiology ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Danio rerio ; DNA-Binding Proteins ; DNA-Binding Proteins - metabolism ; ELAV Proteins - metabolism ; ELAV-Like Protein 3 ; Fundamental and applied biological sciences. Psychology ; Hu Paraneoplastic Encephalomyelitis Antigens ; Life Sciences ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Molecular and cellular biology ; Neurogenesis ; Neurogenesis - genetics ; Neurogenesis - physiology ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neurons and Cognition ; Zebrafish ; Zebrafish - genetics ; Zebrafish - physiology ; Zebrafish Proteins ; Zebrafish Proteins - metabolism</subject><ispartof>Developmental cell, 2012-05, Vol.22 (5), p.1052-1064</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</citedby><cites>FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</cites><orcidid>0000-0003-0271-1757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1534580712001268$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25947751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22595676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00732227$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coolen, Marion</creatorcontrib><creatorcontrib>Thieffry, Denis</creatorcontrib><creatorcontrib>Drivenes, Øyvind</creatorcontrib><creatorcontrib>Becker, Thomas S.</creatorcontrib><creatorcontrib>Bally-Cuif, Laure</creatorcontrib><title>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis. ► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis.</description><subject>Alanine</subject><subject>Alanine - analogs &amp; derivatives</subject><subject>Alanine - pharmacology</subject><subject>Animals</subject><subject>Azepines</subject><subject>Azepines - pharmacology</subject><subject>Basic Helix-Loop-Helix Transcription Factors</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle - physiology</subject><subject>Cell Differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Danio rerio</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>ELAV Proteins - metabolism</subject><subject>ELAV-Like Protein 3</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hu Paraneoplastic Encephalomyelitis Antigens</subject><subject>Life Sciences</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Neurogenesis</subject><subject>Neurogenesis - genetics</subject><subject>Neurogenesis - physiology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - physiology</subject><subject>Zebrafish Proteins</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV2P1CAYhRvjxl1X_4ExvTHRi9b3pdDCjclkdD-SyZqY9ZpQSmeYdGCFdhL_vXQ77t7pDRB4DhzOybJ3CCUC1p_3ZWeO2gwlASQlVCVA9SK7QN7wAhnDl2nNKlowDs159jrGPSQZcniVnRPCBKub-iKTB_ujEPnauzH4IebjzuT39mDdNvd9fmem4LfGmWjno-Cn7e4R-WqD0WN-63a2taP1bqZXblRb72wcrc6vlB59iG-ys14N0bw9zZfZz6tv9-ubYvP9-na92hSaNTgWqLq2b5XWmiPhXJGaEKw5pU1LBXIBCNpgXXeMa42cVoSiaZkiCjTXilSX2afl3p0a5EOwBxV-S6-svFlt5LwH0FSEkOaIif24sA_B_5pMHFMIMSU5KGf8FCVWQog0UPF_FJCBoAyqhNIF1cHHGEz_ZANh5mq5l0tjcm5MQpU8zbL3pxem9mC6J9HfihLw4QSoqNXQB-W0jc8cE7Rp2PyrLwtnUsxHa4KM2hqnTffYley8_beTP7jhs-k</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Coolen, Marion</creator><creator>Thieffry, Denis</creator><creator>Drivenes, Øyvind</creator><creator>Becker, Thomas S.</creator><creator>Bally-Cuif, Laure</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0271-1757</orcidid></search><sort><creationdate>20120515</creationdate><title>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</title><author>Coolen, Marion ; Thieffry, Denis ; Drivenes, Øyvind ; Becker, Thomas S. ; Bally-Cuif, Laure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alanine</topic><topic>Alanine - analogs &amp; derivatives</topic><topic>Alanine - pharmacology</topic><topic>Animals</topic><topic>Azepines</topic><topic>Azepines - pharmacology</topic><topic>Basic Helix-Loop-Helix Transcription Factors</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle - physiology</topic><topic>Cell Differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Danio rerio</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>ELAV Proteins - metabolism</topic><topic>ELAV-Like Protein 3</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hu Paraneoplastic Encephalomyelitis Antigens</topic><topic>Life Sciences</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Neurogenesis</topic><topic>Neurogenesis - genetics</topic><topic>Neurogenesis - physiology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - physiology</topic><topic>Zebrafish Proteins</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coolen, Marion</creatorcontrib><creatorcontrib>Thieffry, Denis</creatorcontrib><creatorcontrib>Drivenes, Øyvind</creatorcontrib><creatorcontrib>Becker, Thomas S.</creatorcontrib><creatorcontrib>Bally-Cuif, Laure</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coolen, Marion</au><au>Thieffry, Denis</au><au>Drivenes, Øyvind</au><au>Becker, Thomas S.</au><au>Bally-Cuif, Laure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>22</volume><issue>5</issue><spage>1052</spage><epage>1064</epage><pages>1052-1064</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis. ► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis.</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>22595676</pmid><doi>10.1016/j.devcel.2012.03.003</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0271-1757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2012-05, Vol.22 (5), p.1052-1064
issn 1534-5807
1878-1551
language eng
recordid cdi_hal_primary_oai_HAL_hal_00732227v1
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Alanine
Alanine - analogs & derivatives
Alanine - pharmacology
Animals
Azepines
Azepines - pharmacology
Basic Helix-Loop-Helix Transcription Factors
Basic Helix-Loop-Helix Transcription Factors - metabolism
Biological and medical sciences
Cell Cycle
Cell Cycle - genetics
Cell Cycle - physiology
Cell Differentiation
Cell Differentiation - physiology
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Danio rerio
DNA-Binding Proteins
DNA-Binding Proteins - metabolism
ELAV Proteins - metabolism
ELAV-Like Protein 3
Fundamental and applied biological sciences. Psychology
Hu Paraneoplastic Encephalomyelitis Antigens
Life Sciences
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
Molecular and cellular biology
Neurogenesis
Neurogenesis - genetics
Neurogenesis - physiology
Neurons
Neurons - cytology
Neurons - physiology
Neurons and Cognition
Zebrafish
Zebrafish - genetics
Zebrafish - physiology
Zebrafish Proteins
Zebrafish Proteins - metabolism
title miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-9%20Controls%20the%20Timing%20of%20Neurogenesis%20through%20the%20Direct%20Inhibition%20of%20Antagonistic%20Factors&rft.jtitle=Developmental%20cell&rft.au=Coolen,%20Marion&rft.date=2012-05-15&rft.volume=22&rft.issue=5&rft.spage=1052&rft.epage=1064&rft.pages=1052-1064&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2012.03.003&rft_dat=%3Cproquest_hal_p%3E1015094503%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015094503&rft_id=info:pmid/22595676&rft_els_id=S1534580712001268&rfr_iscdi=true