miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors
The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of ta...
Gespeichert in:
Veröffentlicht in: | Developmental cell 2012-05, Vol.22 (5), p.1052-1064 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1064 |
---|---|
container_issue | 5 |
container_start_page | 1052 |
container_title | Developmental cell |
container_volume | 22 |
creator | Coolen, Marion Thieffry, Denis Drivenes, Øyvind Becker, Thomas S. Bally-Cuif, Laure |
description | The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis.
► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state
Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis. |
doi_str_mv | 10.1016/j.devcel.2012.03.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00732227v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580712001268</els_id><sourcerecordid>1015094503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</originalsourceid><addsrcrecordid>eNqFkV2P1CAYhRvjxl1X_4ExvTHRi9b3pdDCjclkdD-SyZqY9ZpQSmeYdGCFdhL_vXQ77t7pDRB4DhzOybJ3CCUC1p_3ZWeO2gwlASQlVCVA9SK7QN7wAhnDl2nNKlowDs159jrGPSQZcniVnRPCBKub-iKTB_ujEPnauzH4IebjzuT39mDdNvd9fmem4LfGmWjno-Cn7e4R-WqD0WN-63a2taP1bqZXblRb72wcrc6vlB59iG-ys14N0bw9zZfZz6tv9-ubYvP9-na92hSaNTgWqLq2b5XWmiPhXJGaEKw5pU1LBXIBCNpgXXeMa42cVoSiaZkiCjTXilSX2afl3p0a5EOwBxV-S6-svFlt5LwH0FSEkOaIif24sA_B_5pMHFMIMSU5KGf8FCVWQog0UPF_FJCBoAyqhNIF1cHHGEz_ZANh5mq5l0tjcm5MQpU8zbL3pxem9mC6J9HfihLw4QSoqNXQB-W0jc8cE7Rp2PyrLwtnUsxHa4KM2hqnTffYley8_beTP7jhs-k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1015094503</pqid></control><display><type>article</type><title>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Coolen, Marion ; Thieffry, Denis ; Drivenes, Øyvind ; Becker, Thomas S. ; Bally-Cuif, Laure</creator><creatorcontrib>Coolen, Marion ; Thieffry, Denis ; Drivenes, Øyvind ; Becker, Thomas S. ; Bally-Cuif, Laure</creatorcontrib><description>The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis.
► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state
Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2012.03.003</identifier><identifier>PMID: 22595676</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Alanine ; Alanine - analogs & derivatives ; Alanine - pharmacology ; Animals ; Azepines ; Azepines - pharmacology ; Basic Helix-Loop-Helix Transcription Factors ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological and medical sciences ; Cell Cycle ; Cell Cycle - genetics ; Cell Cycle - physiology ; Cell Differentiation ; Cell Differentiation - physiology ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Danio rerio ; DNA-Binding Proteins ; DNA-Binding Proteins - metabolism ; ELAV Proteins - metabolism ; ELAV-Like Protein 3 ; Fundamental and applied biological sciences. Psychology ; Hu Paraneoplastic Encephalomyelitis Antigens ; Life Sciences ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Molecular and cellular biology ; Neurogenesis ; Neurogenesis - genetics ; Neurogenesis - physiology ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neurons and Cognition ; Zebrafish ; Zebrafish - genetics ; Zebrafish - physiology ; Zebrafish Proteins ; Zebrafish Proteins - metabolism</subject><ispartof>Developmental cell, 2012-05, Vol.22 (5), p.1052-1064</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</citedby><cites>FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</cites><orcidid>0000-0003-0271-1757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1534580712001268$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25947751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22595676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00732227$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coolen, Marion</creatorcontrib><creatorcontrib>Thieffry, Denis</creatorcontrib><creatorcontrib>Drivenes, Øyvind</creatorcontrib><creatorcontrib>Becker, Thomas S.</creatorcontrib><creatorcontrib>Bally-Cuif, Laure</creatorcontrib><title>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis.
► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state
Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis.</description><subject>Alanine</subject><subject>Alanine - analogs & derivatives</subject><subject>Alanine - pharmacology</subject><subject>Animals</subject><subject>Azepines</subject><subject>Azepines - pharmacology</subject><subject>Basic Helix-Loop-Helix Transcription Factors</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle - physiology</subject><subject>Cell Differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Danio rerio</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>ELAV Proteins - metabolism</subject><subject>ELAV-Like Protein 3</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hu Paraneoplastic Encephalomyelitis Antigens</subject><subject>Life Sciences</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Neurogenesis</subject><subject>Neurogenesis - genetics</subject><subject>Neurogenesis - physiology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - physiology</subject><subject>Zebrafish Proteins</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV2P1CAYhRvjxl1X_4ExvTHRi9b3pdDCjclkdD-SyZqY9ZpQSmeYdGCFdhL_vXQ77t7pDRB4DhzOybJ3CCUC1p_3ZWeO2gwlASQlVCVA9SK7QN7wAhnDl2nNKlowDs159jrGPSQZcniVnRPCBKub-iKTB_ujEPnauzH4IebjzuT39mDdNvd9fmem4LfGmWjno-Cn7e4R-WqD0WN-63a2taP1bqZXblRb72wcrc6vlB59iG-ys14N0bw9zZfZz6tv9-ubYvP9-na92hSaNTgWqLq2b5XWmiPhXJGaEKw5pU1LBXIBCNpgXXeMa42cVoSiaZkiCjTXilSX2afl3p0a5EOwBxV-S6-svFlt5LwH0FSEkOaIif24sA_B_5pMHFMIMSU5KGf8FCVWQog0UPF_FJCBoAyqhNIF1cHHGEz_ZANh5mq5l0tjcm5MQpU8zbL3pxem9mC6J9HfihLw4QSoqNXQB-W0jc8cE7Rp2PyrLwtnUsxHa4KM2hqnTffYley8_beTP7jhs-k</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Coolen, Marion</creator><creator>Thieffry, Denis</creator><creator>Drivenes, Øyvind</creator><creator>Becker, Thomas S.</creator><creator>Bally-Cuif, Laure</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0271-1757</orcidid></search><sort><creationdate>20120515</creationdate><title>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</title><author>Coolen, Marion ; Thieffry, Denis ; Drivenes, Øyvind ; Becker, Thomas S. ; Bally-Cuif, Laure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-1adbfbaccc81288a2622168447b49189010ce166d58cc1843241eb5a2a0c8ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alanine</topic><topic>Alanine - analogs & derivatives</topic><topic>Alanine - pharmacology</topic><topic>Animals</topic><topic>Azepines</topic><topic>Azepines - pharmacology</topic><topic>Basic Helix-Loop-Helix Transcription Factors</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle - physiology</topic><topic>Cell Differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Danio rerio</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>ELAV Proteins - metabolism</topic><topic>ELAV-Like Protein 3</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hu Paraneoplastic Encephalomyelitis Antigens</topic><topic>Life Sciences</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Neurogenesis</topic><topic>Neurogenesis - genetics</topic><topic>Neurogenesis - physiology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - physiology</topic><topic>Zebrafish Proteins</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coolen, Marion</creatorcontrib><creatorcontrib>Thieffry, Denis</creatorcontrib><creatorcontrib>Drivenes, Øyvind</creatorcontrib><creatorcontrib>Becker, Thomas S.</creatorcontrib><creatorcontrib>Bally-Cuif, Laure</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coolen, Marion</au><au>Thieffry, Denis</au><au>Drivenes, Øyvind</au><au>Becker, Thomas S.</au><au>Bally-Cuif, Laure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>22</volume><issue>5</issue><spage>1052</spage><epage>1064</epage><pages>1052-1064</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>The timing of commitment and cell-cycle exit within progenitor populations during neurogenesis is a fundamental decision that impacts both the number and identity of neurons produced during development. We show here that microRNA-9 plays a key role in this process through the direct inhibition of targets with antagonistic functions. Across the ventricular zone of the developing zebrafish hindbrain, miR-9 expression occurs at a range of commitment stages. Abrogating miR-9 function transiently delays cell-cycle exit, leading to the increased generation of late-born neuronal populations. Target protection analyses in vivo identify the progenitor-promoting genes her6 and zic5 and the cell-cycle exit-promoting gene elavl3/HuC as sequential targets of miR-9 as neurogenesis proceeds. We propose that miR-9 activity generates an ambivalent progenitor state poised to respond to both progenitor maintenance and commitment cues, which may be necessary to adjust neuronal production to local extrinsic signals during late embryogenesis.
► miR-9 expression encompasses several progenitor commitment states ► miR-9 sets the timing of cell-cycle exit in neuronal progenitors ► miR-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3 ► miR-9 activity leads to the emergence of an ambivalent progenitor state
Coolen et al. show that microRNA-9 sequentially inhibits antagonistic targets, including her6/zic5 and elavl3, during neurogenesis progression. This activity generates an ambivalent progenitor state that can integrate local proliferation and differentiation cues and sets the timing of cell-cycle exit during late embryogenesis.</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>22595676</pmid><doi>10.1016/j.devcel.2012.03.003</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0271-1757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-5807 |
ispartof | Developmental cell, 2012-05, Vol.22 (5), p.1052-1064 |
issn | 1534-5807 1878-1551 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00732227v1 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alanine Alanine - analogs & derivatives Alanine - pharmacology Animals Azepines Azepines - pharmacology Basic Helix-Loop-Helix Transcription Factors Basic Helix-Loop-Helix Transcription Factors - metabolism Biological and medical sciences Cell Cycle Cell Cycle - genetics Cell Cycle - physiology Cell Differentiation Cell Differentiation - physiology Cell differentiation, maturation, development, hematopoiesis Cell physiology Danio rerio DNA-Binding Proteins DNA-Binding Proteins - metabolism ELAV Proteins - metabolism ELAV-Like Protein 3 Fundamental and applied biological sciences. Psychology Hu Paraneoplastic Encephalomyelitis Antigens Life Sciences MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism Molecular and cellular biology Neurogenesis Neurogenesis - genetics Neurogenesis - physiology Neurons Neurons - cytology Neurons - physiology Neurons and Cognition Zebrafish Zebrafish - genetics Zebrafish - physiology Zebrafish Proteins Zebrafish Proteins - metabolism |
title | miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-9%20Controls%20the%20Timing%20of%20Neurogenesis%20through%20the%20Direct%20Inhibition%20of%20Antagonistic%20Factors&rft.jtitle=Developmental%20cell&rft.au=Coolen,%20Marion&rft.date=2012-05-15&rft.volume=22&rft.issue=5&rft.spage=1052&rft.epage=1064&rft.pages=1052-1064&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2012.03.003&rft_dat=%3Cproquest_hal_p%3E1015094503%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1015094503&rft_id=info:pmid/22595676&rft_els_id=S1534580712001268&rfr_iscdi=true |