A neural network approach for the development of modular product architectures

The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer integrated manufacturing 2011-09, Vol.24 (10), p.879-887
Hauptverfasser: Pandremenos, J., Chryssolouris, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887
container_issue 10
container_start_page 879
container_title International journal of computer integrated manufacturing
container_volume 24
creator Pandremenos, J.
Chryssolouris, G.
description The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives.
doi_str_mv 10.1080/0951192X.2011.602361
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00732119v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00732119v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gYtsXXR8yZs26UqGQR1h0I2Cu5CmKa22TUnTkfl7W6ouXV24nHsXh5BrBisGEm4hjRlL-fuKA2OrBDgm7IQsGCY8Qoj5KVlMSDQx5-Si7z8AGMYSFuR5Q1s7eF2PEb6c_6S667zTpqSF8zSUlub2YGvXNbYN1BW0cflQa09HKh9MoNqbsgrWhMHb_pKcFbru7dVPLsnbw_3rdhftXx6ftpt9ZNYxhigVJgXkGWc2tQlkUqYohESTC4gRMpQYG2ksjyFhecYzbVCAFihSqXWMuCQ382-pa9X5qtH-qJyu1G6zV1MHIJCPUg5sZNcza7zre2-LvwEDNflTv_7U5E_N_sbZ3Tyr2tFEo0c5da6CPtbOF163puoV_vvwDZOKdkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A neural network approach for the development of modular product architectures</title><source>Taylor &amp; Francis:Master (3349 titles)</source><source>Business Source Complete</source><creator>Pandremenos, J. ; Chryssolouris, G.</creator><creatorcontrib>Pandremenos, J. ; Chryssolouris, G.</creatorcontrib><description>The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives.</description><identifier>ISSN: 0951-192X</identifier><identifier>EISSN: 1362-3052</identifier><identifier>DOI: 10.1080/0951192X.2011.602361</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>design ; DSM ; Engineering Sciences ; neural networks</subject><ispartof>International journal of computer integrated manufacturing, 2011-09, Vol.24 (10), p.879-887</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</citedby><cites>FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.602361$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/0951192X.2011.602361$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00732119$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandremenos, J.</creatorcontrib><creatorcontrib>Chryssolouris, G.</creatorcontrib><title>A neural network approach for the development of modular product architectures</title><title>International journal of computer integrated manufacturing</title><description>The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives.</description><subject>design</subject><subject>DSM</subject><subject>Engineering Sciences</subject><subject>neural networks</subject><issn>0951-192X</issn><issn>1362-3052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gYtsXXR8yZs26UqGQR1h0I2Cu5CmKa22TUnTkfl7W6ouXV24nHsXh5BrBisGEm4hjRlL-fuKA2OrBDgm7IQsGCY8Qoj5KVlMSDQx5-Si7z8AGMYSFuR5Q1s7eF2PEb6c_6S667zTpqSF8zSUlub2YGvXNbYN1BW0cflQa09HKh9MoNqbsgrWhMHb_pKcFbru7dVPLsnbw_3rdhftXx6ftpt9ZNYxhigVJgXkGWc2tQlkUqYohESTC4gRMpQYG2ksjyFhecYzbVCAFihSqXWMuCQ382-pa9X5qtH-qJyu1G6zV1MHIJCPUg5sZNcza7zre2-LvwEDNflTv_7U5E_N_sbZ3Tyr2tFEo0c5da6CPtbOF163puoV_vvwDZOKdkg</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Pandremenos, J.</creator><creator>Chryssolouris, G.</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201109</creationdate><title>A neural network approach for the development of modular product architectures</title><author>Pandremenos, J. ; Chryssolouris, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>design</topic><topic>DSM</topic><topic>Engineering Sciences</topic><topic>neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandremenos, J.</creatorcontrib><creatorcontrib>Chryssolouris, G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of computer integrated manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandremenos, J.</au><au>Chryssolouris, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for the development of modular product architectures</atitle><jtitle>International journal of computer integrated manufacturing</jtitle><date>2011-09</date><risdate>2011</risdate><volume>24</volume><issue>10</issue><spage>879</spage><epage>887</epage><pages>879-887</pages><issn>0951-192X</issn><eissn>1362-3052</eissn><abstract>The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/0951192X.2011.602361</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-192X
ispartof International journal of computer integrated manufacturing, 2011-09, Vol.24 (10), p.879-887
issn 0951-192X
1362-3052
language eng
recordid cdi_hal_primary_oai_HAL_hal_00732119v1
source Taylor & Francis:Master (3349 titles); Business Source Complete
subjects design
DSM
Engineering Sciences
neural networks
title A neural network approach for the development of modular product architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20the%20development%20of%20modular%20product%20architectures&rft.jtitle=International%20journal%20of%20computer%20integrated%20manufacturing&rft.au=Pandremenos,%20J.&rft.date=2011-09&rft.volume=24&rft.issue=10&rft.spage=879&rft.epage=887&rft.pages=879-887&rft.issn=0951-192X&rft.eissn=1362-3052&rft_id=info:doi/10.1080/0951192X.2011.602361&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00732119v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true