A neural network approach for the development of modular product architectures
The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utili...
Gespeichert in:
Veröffentlicht in: | International journal of computer integrated manufacturing 2011-09, Vol.24 (10), p.879-887 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 887 |
---|---|
container_issue | 10 |
container_start_page | 879 |
container_title | International journal of computer integrated manufacturing |
container_volume | 24 |
creator | Pandremenos, J. Chryssolouris, G. |
description | The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives. |
doi_str_mv | 10.1080/0951192X.2011.602361 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00732119v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00732119v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gYtsXXR8yZs26UqGQR1h0I2Cu5CmKa22TUnTkfl7W6ouXV24nHsXh5BrBisGEm4hjRlL-fuKA2OrBDgm7IQsGCY8Qoj5KVlMSDQx5-Si7z8AGMYSFuR5Q1s7eF2PEb6c_6S667zTpqSF8zSUlub2YGvXNbYN1BW0cflQa09HKh9MoNqbsgrWhMHb_pKcFbru7dVPLsnbw_3rdhftXx6ftpt9ZNYxhigVJgXkGWc2tQlkUqYohESTC4gRMpQYG2ksjyFhecYzbVCAFihSqXWMuCQ382-pa9X5qtH-qJyu1G6zV1MHIJCPUg5sZNcza7zre2-LvwEDNflTv_7U5E_N_sbZ3Tyr2tFEo0c5da6CPtbOF163puoV_vvwDZOKdkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A neural network approach for the development of modular product architectures</title><source>Taylor & Francis:Master (3349 titles)</source><source>Business Source Complete</source><creator>Pandremenos, J. ; Chryssolouris, G.</creator><creatorcontrib>Pandremenos, J. ; Chryssolouris, G.</creatorcontrib><description>The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives.</description><identifier>ISSN: 0951-192X</identifier><identifier>EISSN: 1362-3052</identifier><identifier>DOI: 10.1080/0951192X.2011.602361</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>design ; DSM ; Engineering Sciences ; neural networks</subject><ispartof>International journal of computer integrated manufacturing, 2011-09, Vol.24 (10), p.879-887</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</citedby><cites>FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/0951192X.2011.602361$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/0951192X.2011.602361$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00732119$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandremenos, J.</creatorcontrib><creatorcontrib>Chryssolouris, G.</creatorcontrib><title>A neural network approach for the development of modular product architectures</title><title>International journal of computer integrated manufacturing</title><description>The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives.</description><subject>design</subject><subject>DSM</subject><subject>Engineering Sciences</subject><subject>neural networks</subject><issn>0951-192X</issn><issn>1362-3052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gYtsXXR8yZs26UqGQR1h0I2Cu5CmKa22TUnTkfl7W6ouXV24nHsXh5BrBisGEm4hjRlL-fuKA2OrBDgm7IQsGCY8Qoj5KVlMSDQx5-Si7z8AGMYSFuR5Q1s7eF2PEb6c_6S667zTpqSF8zSUlub2YGvXNbYN1BW0cflQa09HKh9MoNqbsgrWhMHb_pKcFbru7dVPLsnbw_3rdhftXx6ftpt9ZNYxhigVJgXkGWc2tQlkUqYohESTC4gRMpQYG2ksjyFhecYzbVCAFihSqXWMuCQ382-pa9X5qtH-qJyu1G6zV1MHIJCPUg5sZNcza7zre2-LvwEDNflTv_7U5E_N_sbZ3Tyr2tFEo0c5da6CPtbOF163puoV_vvwDZOKdkg</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Pandremenos, J.</creator><creator>Chryssolouris, G.</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201109</creationdate><title>A neural network approach for the development of modular product architectures</title><author>Pandremenos, J. ; Chryssolouris, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-97c9032b21e9e60b88937783cd70530b3835c8ce25061db2bac370a73798aa533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>design</topic><topic>DSM</topic><topic>Engineering Sciences</topic><topic>neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandremenos, J.</creatorcontrib><creatorcontrib>Chryssolouris, G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of computer integrated manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandremenos, J.</au><au>Chryssolouris, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for the development of modular product architectures</atitle><jtitle>International journal of computer integrated manufacturing</jtitle><date>2011-09</date><risdate>2011</risdate><volume>24</volume><issue>10</issue><spage>879</spage><epage>887</epage><pages>879-887</pages><issn>0951-192X</issn><eissn>1362-3052</eissn><abstract>The clustering of a product's components into modules is an effective means of creating modular architectures. This article initially links the clustering efficiency with the interactions of a product's components, and interesting observations are extracted. A novel clustering method utilising neural network algorithms and design structure matrices (DSMs) is then introduced. The method is capable of reorganising the components of a product in clusters, in order for the interactions to be maximised inside and minimised outside the clusters. In addition, a multi-criteria decision-making approach is used, in order for the efficiency of the different clustering alternatives, derived by the network, to be evaluated. Finally, a case study is presented to demonstrate and assess the application of the method. The derived algorithmic clustering proved to be more efficient compared with the empirical one, and thus, it can be used by design engineers as an effective tool for the derivation of product clustering alternatives.</abstract><pub>Taylor & Francis</pub><doi>10.1080/0951192X.2011.602361</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-192X |
ispartof | International journal of computer integrated manufacturing, 2011-09, Vol.24 (10), p.879-887 |
issn | 0951-192X 1362-3052 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00732119v1 |
source | Taylor & Francis:Master (3349 titles); Business Source Complete |
subjects | design DSM Engineering Sciences neural networks |
title | A neural network approach for the development of modular product architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20the%20development%20of%20modular%20product%20architectures&rft.jtitle=International%20journal%20of%20computer%20integrated%20manufacturing&rft.au=Pandremenos,%20J.&rft.date=2011-09&rft.volume=24&rft.issue=10&rft.spage=879&rft.epage=887&rft.pages=879-887&rft.issn=0951-192X&rft.eissn=1362-3052&rft_id=info:doi/10.1080/0951192X.2011.602361&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00732119v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |