Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field
The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10μms−1) under magnetic fields up to 10T. Experimental results show that the application of a strong magneti...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2012-05, Vol.60 (8), p.3321-3332 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3332 |
---|---|
container_issue | 8 |
container_start_page | 3321 |
container_title | Acta materialia |
container_volume | 60 |
creator | Li, Xi Gagnoud, Annie Fautrelle, Yves Ren, Zhongming Moreau, Rene Zhang, Yudong Esling, Claude |
description | The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10μms−1) under magnetic fields up to 10T. Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET. The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically. Numerical results reveal that the value of the thermoelectric magnetic force increases as the magnetic field intensity and the temperature gradient increase. A torque is created on cells/dendrites and equiaxed grains. This torque breaks cells/dendrites and drives the rotation of equiaxed grains. The rotation of equiaxed grains in the mushy zone will further destroy cells/dendrites. Thus, with the increase of the magnetic field intensity and the temperature gradient, the volume fraction of equiaxed grains in front of columnar dendrites increases. When the magnetic field intensity and the temperature gradient reach a critical value, the growth of columnar dendrites is blocked and the CET then occurs. The present work may initiate a new method of inducing the CET via an applied strong magnetic field during directional solidification. |
doi_str_mv | 10.1016/j.actamat.2012.02.019 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00728090v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645412001279</els_id><sourcerecordid>oai_HAL_hal_00728090v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-d258e7bfc7cfa0a3cc750e2a1db347e41960e73aa7283a56c25af708c2fbaaaf3</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhpeSQPP1Ewq69NDDOvpYWd5TCWnSBAy5JGcxlkaOzK7kSnI-_kV_cuSuybUwIPHyvDPMvE3zjdEZo2x-uZmBKTBCmXHK-IzWYv2X5oQtlGh5J8VR_QvZt_NOdl-b05w3tIKqoyfN318YbPIFiUuwHjEUKD4GAsESE4fdGCC1Jbb4Z-fhDS0pCUL2_xi7Sz6sifUJzV6AgeQ4eOudN4cuhQzxFRNZp_hankneYm2xC7ZKQHJJsfpHWAcs3hDncbDnzbGDIePF4T1rnm5vHq_v2uXD7_vrq2VrOtGX1nK5QLVyRhkHFIQxSlLkwOxKdAo71s8pKgGg-EKAnBsuwSm6MNytAMCJs-bH1PcZBr1NfoT0riN4fXe11HuN0mqlPX1hlZUTa1LMOaH7NDCq9xHojT5EoPcRaFqL9dX3ffJtIRsY6oWD8fnTXFfglEtVuZ8Th3XhF49JZ-MxGJxOq230_5n0ATGwo6s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Xi ; Gagnoud, Annie ; Fautrelle, Yves ; Ren, Zhongming ; Moreau, Rene ; Zhang, Yudong ; Esling, Claude</creator><creatorcontrib>Li, Xi ; Gagnoud, Annie ; Fautrelle, Yves ; Ren, Zhongming ; Moreau, Rene ; Zhang, Yudong ; Esling, Claude</creatorcontrib><description>The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10μms−1) under magnetic fields up to 10T. Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET. The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically. Numerical results reveal that the value of the thermoelectric magnetic force increases as the magnetic field intensity and the temperature gradient increase. A torque is created on cells/dendrites and equiaxed grains. This torque breaks cells/dendrites and drives the rotation of equiaxed grains. The rotation of equiaxed grains in the mushy zone will further destroy cells/dendrites. Thus, with the increase of the magnetic field intensity and the temperature gradient, the volume fraction of equiaxed grains in front of columnar dendrites increases. When the magnetic field intensity and the temperature gradient reach a critical value, the growth of columnar dendrites is blocked and the CET then occurs. The present work may initiate a new method of inducing the CET via an applied strong magnetic field during directional solidification.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2012.02.019</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical Sciences ; Columnar-to-equiaxed transition (CET) ; Exact sciences and technology ; Material chemistry ; Metals. Metallurgy ; Strong magnetic field ; Thermoelectric magnetic force</subject><ispartof>Acta materialia, 2012-05, Vol.60 (8), p.3321-3332</ispartof><rights>2012 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-d258e7bfc7cfa0a3cc750e2a1db347e41960e73aa7283a56c25af708c2fbaaaf3</citedby><cites>FETCH-LOGICAL-c439t-d258e7bfc7cfa0a3cc750e2a1db347e41960e73aa7283a56c25af708c2fbaaaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645412001279$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25820257$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00728090$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Gagnoud, Annie</creatorcontrib><creatorcontrib>Fautrelle, Yves</creatorcontrib><creatorcontrib>Ren, Zhongming</creatorcontrib><creatorcontrib>Moreau, Rene</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Esling, Claude</creatorcontrib><title>Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field</title><title>Acta materialia</title><description>The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10μms−1) under magnetic fields up to 10T. Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET. The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically. Numerical results reveal that the value of the thermoelectric magnetic force increases as the magnetic field intensity and the temperature gradient increase. A torque is created on cells/dendrites and equiaxed grains. This torque breaks cells/dendrites and drives the rotation of equiaxed grains. The rotation of equiaxed grains in the mushy zone will further destroy cells/dendrites. Thus, with the increase of the magnetic field intensity and the temperature gradient, the volume fraction of equiaxed grains in front of columnar dendrites increases. When the magnetic field intensity and the temperature gradient reach a critical value, the growth of columnar dendrites is blocked and the CET then occurs. The present work may initiate a new method of inducing the CET via an applied strong magnetic field during directional solidification.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Columnar-to-equiaxed transition (CET)</subject><subject>Exact sciences and technology</subject><subject>Material chemistry</subject><subject>Metals. Metallurgy</subject><subject>Strong magnetic field</subject><subject>Thermoelectric magnetic force</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rGzEQhpeSQPP1Ewq69NDDOvpYWd5TCWnSBAy5JGcxlkaOzK7kSnI-_kV_cuSuybUwIPHyvDPMvE3zjdEZo2x-uZmBKTBCmXHK-IzWYv2X5oQtlGh5J8VR_QvZt_NOdl-b05w3tIKqoyfN318YbPIFiUuwHjEUKD4GAsESE4fdGCC1Jbb4Z-fhDS0pCUL2_xi7Sz6sifUJzV6AgeQ4eOudN4cuhQzxFRNZp_hankneYm2xC7ZKQHJJsfpHWAcs3hDncbDnzbGDIePF4T1rnm5vHq_v2uXD7_vrq2VrOtGX1nK5QLVyRhkHFIQxSlLkwOxKdAo71s8pKgGg-EKAnBsuwSm6MNytAMCJs-bH1PcZBr1NfoT0riN4fXe11HuN0mqlPX1hlZUTa1LMOaH7NDCq9xHojT5EoPcRaFqL9dX3ffJtIRsY6oWD8fnTXFfglEtVuZ8Th3XhF49JZ-MxGJxOq230_5n0ATGwo6s</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Li, Xi</creator><creator>Gagnoud, Annie</creator><creator>Fautrelle, Yves</creator><creator>Ren, Zhongming</creator><creator>Moreau, Rene</creator><creator>Zhang, Yudong</creator><creator>Esling, Claude</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20120501</creationdate><title>Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field</title><author>Li, Xi ; Gagnoud, Annie ; Fautrelle, Yves ; Ren, Zhongming ; Moreau, Rene ; Zhang, Yudong ; Esling, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-d258e7bfc7cfa0a3cc750e2a1db347e41960e73aa7283a56c25af708c2fbaaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Columnar-to-equiaxed transition (CET)</topic><topic>Exact sciences and technology</topic><topic>Material chemistry</topic><topic>Metals. Metallurgy</topic><topic>Strong magnetic field</topic><topic>Thermoelectric magnetic force</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xi</creatorcontrib><creatorcontrib>Gagnoud, Annie</creatorcontrib><creatorcontrib>Fautrelle, Yves</creatorcontrib><creatorcontrib>Ren, Zhongming</creatorcontrib><creatorcontrib>Moreau, Rene</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Esling, Claude</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xi</au><au>Gagnoud, Annie</au><au>Fautrelle, Yves</au><au>Ren, Zhongming</au><au>Moreau, Rene</au><au>Zhang, Yudong</au><au>Esling, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field</atitle><jtitle>Acta materialia</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>60</volume><issue>8</issue><spage>3321</spage><epage>3332</epage><pages>3321-3332</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10μms−1) under magnetic fields up to 10T. Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET. The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically. Numerical results reveal that the value of the thermoelectric magnetic force increases as the magnetic field intensity and the temperature gradient increase. A torque is created on cells/dendrites and equiaxed grains. This torque breaks cells/dendrites and drives the rotation of equiaxed grains. The rotation of equiaxed grains in the mushy zone will further destroy cells/dendrites. Thus, with the increase of the magnetic field intensity and the temperature gradient, the volume fraction of equiaxed grains in front of columnar dendrites increases. When the magnetic field intensity and the temperature gradient reach a critical value, the growth of columnar dendrites is blocked and the CET then occurs. The present work may initiate a new method of inducing the CET via an applied strong magnetic field during directional solidification.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2012.02.019</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2012-05, Vol.60 (8), p.3321-3332 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00728090v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Chemical Sciences Columnar-to-equiaxed transition (CET) Exact sciences and technology Material chemistry Metals. Metallurgy Strong magnetic field Thermoelectric magnetic force |
title | Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendrite%20fragmentation%20and%20columnar-to-equiaxed%20transition%20during%20directional%20solidification%20at%20lower%20growth%20speed%20under%20a%20strong%20magnetic%20field&rft.jtitle=Acta%20materialia&rft.au=Li,%20Xi&rft.date=2012-05-01&rft.volume=60&rft.issue=8&rft.spage=3321&rft.epage=3332&rft.pages=3321-3332&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2012.02.019&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00728090v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645412001279&rfr_iscdi=true |