Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics

Using microfabrication techniques, it has become possible to make mechanical devices with dimensions in the micro and even in the nano scale domain. Allied to low temperature techniques, these systems have opened a new path in physics with the ultimate goal of reaching the quantum nature of a macros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2010-02, Vol.158 (3-4), p.678-684
Hauptverfasser: Collin, E., Kofler, J., Heron, J.-S., Bourgeois, O., Bunkov, Yu. M., Godfrin, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 3-4
container_start_page 678
container_title Journal of low temperature physics
container_volume 158
creator Collin, E.
Kofler, J.
Heron, J.-S.
Bourgeois, O.
Bunkov, Yu. M.
Godfrin, H.
description Using microfabrication techniques, it has become possible to make mechanical devices with dimensions in the micro and even in the nano scale domain. Allied to low temperature techniques, these systems have opened a new path in physics with the ultimate goal of reaching the quantum nature of a macroscopic mechanical degree of freedom (LaHaye et al. in Science 304:74, 2004 ). Within this field, materials research plays a significant role. It ranges from the fundamental nature of the dissipation mechanisms at the lowest temperatures, to the non-linear behavior of mechanical oscillators. We present experimental results on cantilever structures mimicking the well known “vibrating wire” technique, which present many advantages as far as the mechanical studies are concerned: the measurement is phase-resolved, they can be magnetomotive and electrostatically driven, and support extremely large displacements. Moreover, these devices can be advantageously used to study quantum fluids, making the link with conventional low temperature physics.
doi_str_mv 10.1007/s10909-009-9960-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00725962v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926324545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b29f0d289372d19fbe5ec1e862a1d483e3d342f5487f1bab56cc0d258d804faf3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHbeIRYB_8RJvKwq_qS0ILXA0nISu01J42InRd1xELhcT4KjIJYsRjN6-t6T5gFwjtEVRii-dhhxxAPkh_MIBewADDCLaRBTFh-CAUKEBIRwfAxOnFshDyYRHYD51GxVBfefXy9lZmVT1gv4WloF0_JN7T-_4fRmMoOyLuCkO2aNbfOmtcpBbSxMzQecq_VGeacX4dNy58rcnYIjLSunzn73EDzf3szH90H6ePcwHqVBTnncBBnhGhUk4TQmBeY6U0zlWCURkbgIE6poQUOiWZjEGmcyY1Gee54lRYJCLTUdgss-dykrsbHlWtqdMLIU96NUdJpvhjAekS327EXPbqx5b5VrxLp0uaoqWSvTOsFJREnIQuZJ3JO5Nc5Zpf-iMRJd2aIv26dz0ZUtOg_pPc6z9UJZsTKtrf3z_5h-AHyJgko</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926324545</pqid></control><display><type>article</type><title>Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Collin, E. ; Kofler, J. ; Heron, J.-S. ; Bourgeois, O. ; Bunkov, Yu. M. ; Godfrin, H.</creator><creatorcontrib>Collin, E. ; Kofler, J. ; Heron, J.-S. ; Bourgeois, O. ; Bunkov, Yu. M. ; Godfrin, H.</creatorcontrib><description>Using microfabrication techniques, it has become possible to make mechanical devices with dimensions in the micro and even in the nano scale domain. Allied to low temperature techniques, these systems have opened a new path in physics with the ultimate goal of reaching the quantum nature of a macroscopic mechanical degree of freedom (LaHaye et al. in Science 304:74, 2004 ). Within this field, materials research plays a significant role. It ranges from the fundamental nature of the dissipation mechanisms at the lowest temperatures, to the non-linear behavior of mechanical oscillators. We present experimental results on cantilever structures mimicking the well known “vibrating wire” technique, which present many advantages as far as the mechanical studies are concerned: the measurement is phase-resolved, they can be magnetomotive and electrostatically driven, and support extremely large displacements. Moreover, these devices can be advantageously used to study quantum fluids, making the link with conventional low temperature physics.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-009-9960-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter ; Condensed Matter Physics ; Devices ; Dissipation ; Low temperature physics ; Magnetic Materials ; Magnetism ; Mechanical oscillators ; Mesoscopic Systems and Quantum Hall Effect ; Nanomaterials ; Nanostructure ; Nonlinearity ; Physics ; Physics and Astronomy ; Wire</subject><ispartof>Journal of low temperature physics, 2010-02, Vol.158 (3-4), p.678-684</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b29f0d289372d19fbe5ec1e862a1d483e3d342f5487f1bab56cc0d258d804faf3</citedby><cites>FETCH-LOGICAL-c397t-b29f0d289372d19fbe5ec1e862a1d483e3d342f5487f1bab56cc0d258d804faf3</cites><orcidid>0000-0002-0465-7400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-009-9960-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-009-9960-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00725962$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Collin, E.</creatorcontrib><creatorcontrib>Kofler, J.</creatorcontrib><creatorcontrib>Heron, J.-S.</creatorcontrib><creatorcontrib>Bourgeois, O.</creatorcontrib><creatorcontrib>Bunkov, Yu. M.</creatorcontrib><creatorcontrib>Godfrin, H.</creatorcontrib><title>Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>Using microfabrication techniques, it has become possible to make mechanical devices with dimensions in the micro and even in the nano scale domain. Allied to low temperature techniques, these systems have opened a new path in physics with the ultimate goal of reaching the quantum nature of a macroscopic mechanical degree of freedom (LaHaye et al. in Science 304:74, 2004 ). Within this field, materials research plays a significant role. It ranges from the fundamental nature of the dissipation mechanisms at the lowest temperatures, to the non-linear behavior of mechanical oscillators. We present experimental results on cantilever structures mimicking the well known “vibrating wire” technique, which present many advantages as far as the mechanical studies are concerned: the measurement is phase-resolved, they can be magnetomotive and electrostatically driven, and support extremely large displacements. Moreover, these devices can be advantageously used to study quantum fluids, making the link with conventional low temperature physics.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Dissipation</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Mechanical oscillators</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Wire</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHbeIRYB_8RJvKwq_qS0ILXA0nISu01J42InRd1xELhcT4KjIJYsRjN6-t6T5gFwjtEVRii-dhhxxAPkh_MIBewADDCLaRBTFh-CAUKEBIRwfAxOnFshDyYRHYD51GxVBfefXy9lZmVT1gv4WloF0_JN7T-_4fRmMoOyLuCkO2aNbfOmtcpBbSxMzQecq_VGeacX4dNy58rcnYIjLSunzn73EDzf3szH90H6ePcwHqVBTnncBBnhGhUk4TQmBeY6U0zlWCURkbgIE6poQUOiWZjEGmcyY1Gee54lRYJCLTUdgss-dykrsbHlWtqdMLIU96NUdJpvhjAekS327EXPbqx5b5VrxLp0uaoqWSvTOsFJREnIQuZJ3JO5Nc5Zpf-iMRJd2aIv26dz0ZUtOg_pPc6z9UJZsTKtrf3z_5h-AHyJgko</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Collin, E.</creator><creator>Kofler, J.</creator><creator>Heron, J.-S.</creator><creator>Bourgeois, O.</creator><creator>Bunkov, Yu. M.</creator><creator>Godfrin, H.</creator><general>Springer US</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid></search><sort><creationdate>20100201</creationdate><title>Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics</title><author>Collin, E. ; Kofler, J. ; Heron, J.-S. ; Bourgeois, O. ; Bunkov, Yu. M. ; Godfrin, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b29f0d289372d19fbe5ec1e862a1d483e3d342f5487f1bab56cc0d258d804faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Dissipation</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Mechanical oscillators</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collin, E.</creatorcontrib><creatorcontrib>Kofler, J.</creatorcontrib><creatorcontrib>Heron, J.-S.</creatorcontrib><creatorcontrib>Bourgeois, O.</creatorcontrib><creatorcontrib>Bunkov, Yu. M.</creatorcontrib><creatorcontrib>Godfrin, H.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collin, E.</au><au>Kofler, J.</au><au>Heron, J.-S.</au><au>Bourgeois, O.</au><au>Bunkov, Yu. M.</au><au>Godfrin, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>158</volume><issue>3-4</issue><spage>678</spage><epage>684</epage><pages>678-684</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>Using microfabrication techniques, it has become possible to make mechanical devices with dimensions in the micro and even in the nano scale domain. Allied to low temperature techniques, these systems have opened a new path in physics with the ultimate goal of reaching the quantum nature of a macroscopic mechanical degree of freedom (LaHaye et al. in Science 304:74, 2004 ). Within this field, materials research plays a significant role. It ranges from the fundamental nature of the dissipation mechanisms at the lowest temperatures, to the non-linear behavior of mechanical oscillators. We present experimental results on cantilever structures mimicking the well known “vibrating wire” technique, which present many advantages as far as the mechanical studies are concerned: the measurement is phase-resolved, they can be magnetomotive and electrostatically driven, and support extremely large displacements. Moreover, these devices can be advantageously used to study quantum fluids, making the link with conventional low temperature physics.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10909-009-9960-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2010-02, Vol.158 (3-4), p.678-684
issn 0022-2291
1573-7357
language eng
recordid cdi_hal_primary_oai_HAL_hal_00725962v1
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Condensed Matter
Condensed Matter Physics
Devices
Dissipation
Low temperature physics
Magnetic Materials
Magnetism
Mechanical oscillators
Mesoscopic Systems and Quantum Hall Effect
Nanomaterials
Nanostructure
Nonlinearity
Physics
Physics and Astronomy
Wire
title Novel “Vibrating Wire Like” NEMS and MEMS Structures for Low Temperature Physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20%E2%80%9CVibrating%20Wire%20Like%E2%80%9D%20NEMS%20and%20MEMS%20Structures%20for%20Low%20Temperature%20Physics&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Collin,%20E.&rft.date=2010-02-01&rft.volume=158&rft.issue=3-4&rft.spage=678&rft.epage=684&rft.pages=678-684&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-009-9960-5&rft_dat=%3Cproquest_hal_p%3E926324545%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926324545&rft_id=info:pmid/&rfr_iscdi=true