An approximation scheme for a Hamilton–Jacobi equation defined on a network

In this paper we study approximation of Hamilton–Jacobi equations defined on a network. We introduce an appropriate notion of viscosity solution on networks which satisfies existence, uniqueness and stability properties. Then we define an approximation scheme of semi-Lagrangian type by discretizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2013-11, Vol.73, p.33-47
Hauptverfasser: Camilli, Fabio, Festa, Adriano, Schieborn, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 33
container_title Applied numerical mathematics
container_volume 73
creator Camilli, Fabio
Festa, Adriano
Schieborn, Dirk
description In this paper we study approximation of Hamilton–Jacobi equations defined on a network. We introduce an appropriate notion of viscosity solution on networks which satisfies existence, uniqueness and stability properties. Then we define an approximation scheme of semi-Lagrangian type by discretizing in time the representation formula for the solution of Hamilton–Jacobi equations and we prove that the discrete problem admits a unique solution. Moreover we prove that the solution of the approximation scheme converges to the solution of the continuous problem uniformly on the network. In the second part of the paper we study a fully discrete scheme obtained via a finite elements discretization of the semi-discrete problem. Also for fully discrete scheme we prove the well posedness and the convergence to the viscosity solution of the Hamilton–Jacobi equation. We also discuss some issues concerning the implementation of the algorithm and we present some numerical examples.
doi_str_mv 10.1016/j.apnum.2013.05.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00724768v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927413000792</els_id><sourcerecordid>1671550209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-cf49527d25fcd44e2a1d7dcc099f64a31dd89e74a6394bf4b439d3d9303d654a3</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhokiBeq4eYIsGpNBylEkJXHIYBhJncJFl3YmaPIE05FEm5STdOs79A37JKWjImOmOxy-_-7-n5BLCgUFWt3sCr0fjn1RAmUFiAKAfSAz2tQsF7yCMzJLVJPLsuafyHmMOwAQgsOMfFsMmd7vg39xvR6dH7Jotthj1vqQ6Wyle9eNfvj7-89XbfzGZXg4TpzF1g1os9TqbMDx2YfHz-Rjq7uIF__rnPy8v_uxXOXr718elot1bnhDx9y0XIqytqVojeUcS01tbY0BKduKa0atbSTWXFdM8k3LN5xJy6xkwGwlEjAn19Pere7UPqTXwy_ltVOrxVqdZgB1yeuqeaKJvZrYZPJwxDiq3kWDXacH9MeoaFVTIaAEmVA2oSb4GAO2b7spqFPQaqdeg1anoBWIdIcl1e2kwuT4yWFQ0TgcDFoX0IzKeveu_h92iIfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671550209</pqid></control><display><type>article</type><title>An approximation scheme for a Hamilton–Jacobi equation defined on a network</title><source>Elsevier ScienceDirect Journals</source><creator>Camilli, Fabio ; Festa, Adriano ; Schieborn, Dirk</creator><creatorcontrib>Camilli, Fabio ; Festa, Adriano ; Schieborn, Dirk</creatorcontrib><description>In this paper we study approximation of Hamilton–Jacobi equations defined on a network. We introduce an appropriate notion of viscosity solution on networks which satisfies existence, uniqueness and stability properties. Then we define an approximation scheme of semi-Lagrangian type by discretizing in time the representation formula for the solution of Hamilton–Jacobi equations and we prove that the discrete problem admits a unique solution. Moreover we prove that the solution of the approximation scheme converges to the solution of the continuous problem uniformly on the network. In the second part of the paper we study a fully discrete scheme obtained via a finite elements discretization of the semi-discrete problem. Also for fully discrete scheme we prove the well posedness and the convergence to the viscosity solution of the Hamilton–Jacobi equation. We also discuss some issues concerning the implementation of the algorithm and we present some numerical examples.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2013.05.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analysis of PDEs ; Approximation ; Convergence ; Discretization ; Hamilton-Jacobi equation ; Mathematical analysis ; Mathematical models ; Mathematics ; Network ; Networks ; Numerical Analysis ; Viscosity ; Viscosity solution</subject><ispartof>Applied numerical mathematics, 2013-11, Vol.73, p.33-47</ispartof><rights>2013 IMACS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-cf49527d25fcd44e2a1d7dcc099f64a31dd89e74a6394bf4b439d3d9303d654a3</citedby><cites>FETCH-LOGICAL-c481t-cf49527d25fcd44e2a1d7dcc099f64a31dd89e74a6394bf4b439d3d9303d654a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168927413000792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00724768$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Camilli, Fabio</creatorcontrib><creatorcontrib>Festa, Adriano</creatorcontrib><creatorcontrib>Schieborn, Dirk</creatorcontrib><title>An approximation scheme for a Hamilton–Jacobi equation defined on a network</title><title>Applied numerical mathematics</title><description>In this paper we study approximation of Hamilton–Jacobi equations defined on a network. We introduce an appropriate notion of viscosity solution on networks which satisfies existence, uniqueness and stability properties. Then we define an approximation scheme of semi-Lagrangian type by discretizing in time the representation formula for the solution of Hamilton–Jacobi equations and we prove that the discrete problem admits a unique solution. Moreover we prove that the solution of the approximation scheme converges to the solution of the continuous problem uniformly on the network. In the second part of the paper we study a fully discrete scheme obtained via a finite elements discretization of the semi-discrete problem. Also for fully discrete scheme we prove the well posedness and the convergence to the viscosity solution of the Hamilton–Jacobi equation. We also discuss some issues concerning the implementation of the algorithm and we present some numerical examples.</description><subject>Analysis of PDEs</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Hamilton-Jacobi equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Network</subject><subject>Networks</subject><subject>Numerical Analysis</subject><subject>Viscosity</subject><subject>Viscosity solution</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhokiBeq4eYIsGpNBylEkJXHIYBhJncJFl3YmaPIE05FEm5STdOs79A37JKWjImOmOxy-_-7-n5BLCgUFWt3sCr0fjn1RAmUFiAKAfSAz2tQsF7yCMzJLVJPLsuafyHmMOwAQgsOMfFsMmd7vg39xvR6dH7Jotthj1vqQ6Wyle9eNfvj7-89XbfzGZXg4TpzF1g1os9TqbMDx2YfHz-Rjq7uIF__rnPy8v_uxXOXr718elot1bnhDx9y0XIqytqVojeUcS01tbY0BKduKa0atbSTWXFdM8k3LN5xJy6xkwGwlEjAn19Pere7UPqTXwy_ltVOrxVqdZgB1yeuqeaKJvZrYZPJwxDiq3kWDXacH9MeoaFVTIaAEmVA2oSb4GAO2b7spqFPQaqdeg1anoBWIdIcl1e2kwuT4yWFQ0TgcDFoX0IzKeveu_h92iIfs</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Camilli, Fabio</creator><creator>Festa, Adriano</creator><creator>Schieborn, Dirk</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20131101</creationdate><title>An approximation scheme for a Hamilton–Jacobi equation defined on a network</title><author>Camilli, Fabio ; Festa, Adriano ; Schieborn, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-cf49527d25fcd44e2a1d7dcc099f64a31dd89e74a6394bf4b439d3d9303d654a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of PDEs</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Hamilton-Jacobi equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Network</topic><topic>Networks</topic><topic>Numerical Analysis</topic><topic>Viscosity</topic><topic>Viscosity solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camilli, Fabio</creatorcontrib><creatorcontrib>Festa, Adriano</creatorcontrib><creatorcontrib>Schieborn, Dirk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camilli, Fabio</au><au>Festa, Adriano</au><au>Schieborn, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approximation scheme for a Hamilton–Jacobi equation defined on a network</atitle><jtitle>Applied numerical mathematics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>73</volume><spage>33</spage><epage>47</epage><pages>33-47</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>In this paper we study approximation of Hamilton–Jacobi equations defined on a network. We introduce an appropriate notion of viscosity solution on networks which satisfies existence, uniqueness and stability properties. Then we define an approximation scheme of semi-Lagrangian type by discretizing in time the representation formula for the solution of Hamilton–Jacobi equations and we prove that the discrete problem admits a unique solution. Moreover we prove that the solution of the approximation scheme converges to the solution of the continuous problem uniformly on the network. In the second part of the paper we study a fully discrete scheme obtained via a finite elements discretization of the semi-discrete problem. Also for fully discrete scheme we prove the well posedness and the convergence to the viscosity solution of the Hamilton–Jacobi equation. We also discuss some issues concerning the implementation of the algorithm and we present some numerical examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2013.05.003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 2013-11, Vol.73, p.33-47
issn 0168-9274
1873-5460
language eng
recordid cdi_hal_primary_oai_HAL_hal_00724768v1
source Elsevier ScienceDirect Journals
subjects Analysis of PDEs
Approximation
Convergence
Discretization
Hamilton-Jacobi equation
Mathematical analysis
Mathematical models
Mathematics
Network
Networks
Numerical Analysis
Viscosity
Viscosity solution
title An approximation scheme for a Hamilton–Jacobi equation defined on a network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approximation%20scheme%20for%20a%20Hamilton%E2%80%93Jacobi%20equation%20defined%20on%20a%20network&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Camilli,%20Fabio&rft.date=2013-11-01&rft.volume=73&rft.spage=33&rft.epage=47&rft.pages=33-47&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2013.05.003&rft_dat=%3Cproquest_hal_p%3E1671550209%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671550209&rft_id=info:pmid/&rft_els_id=S0168927413000792&rfr_iscdi=true