Practical stabilization for piecewise-affine systems: A BMI approach

We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis. Hybrid systems 2012-08, Vol.6 (3), p.859-870
Hauptverfasser: Kamri, D., Bourdais, R., Buisson, J., Larbes, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 870
container_issue 3
container_start_page 859
container_title Nonlinear analysis. Hybrid systems
container_volume 6
creator Kamri, D.
Bourdais, R.
Buisson, J.
Larbes, C.
description We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities.
doi_str_mv 10.1016/j.nahs.2012.01.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00724463v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751570X12000027</els_id><sourcerecordid>1022902849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxXMAiTH4Apx6hEOLnabNiriM8WeThuAAErcozVwtU9eWpBsan55WRRw52bJ-fn5-jF0gRAiYXm-iSq99xAF5BBgB4BEboUwwTCR8nLBT7zcAScYnYsTuX502rTW6DHyrc1vab93augqK2gWNJUNf1lOoi8JWFPiDb2nrb4JpcPe8CHTTuFqb9Rk7LnTp6fy3jtn748PbbB4uX54Ws-kyNHEq23AFfJJJXeQ8kxPkmYBcCi4hTnmRUIIJgpZCZAlHqbOuIQEpUQ4FIuaE8ZhdDbprXarG2a12B1Vrq-bTpepnAJILkcb7nr0c2M7i5458q7bWGypLXVG98wqB86wzJLIO5QNqXO29o-JPG0H1kaqN6iNVfaQKsDvT698OS9Q9vLfklDeWKkMr68i0alXb_9Z_ABhifqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022902849</pqid></control><display><type>article</type><title>Practical stabilization for piecewise-affine systems: A BMI approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kamri, D. ; Bourdais, R. ; Buisson, J. ; Larbes, C.</creator><creatorcontrib>Kamri, D. ; Bourdais, R. ; Buisson, J. ; Larbes, C.</creatorcontrib><description>We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities.</description><identifier>ISSN: 1751-570X</identifier><identifier>DOI: 10.1016/j.nahs.2012.01.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymptotic properties ; Automatic ; Automatic Control Engineering ; Bismaleimides ; Computer Science ; Devices ; Disturbances ; Electric circuits ; Engineering Sciences ; Hybrid systems ; Irregularities ; LMI ; Lyapunov theory ; Practical switching stabilization ; PWA systems ; Searching ; Stabilization</subject><ispartof>Nonlinear analysis. Hybrid systems, 2012-08, Vol.6 (3), p.859-870</ispartof><rights>2012 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</citedby><cites>FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</cites><orcidid>0000-0001-8332-0939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nahs.2012.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-00724463$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamri, D.</creatorcontrib><creatorcontrib>Bourdais, R.</creatorcontrib><creatorcontrib>Buisson, J.</creatorcontrib><creatorcontrib>Larbes, C.</creatorcontrib><title>Practical stabilization for piecewise-affine systems: A BMI approach</title><title>Nonlinear analysis. Hybrid systems</title><description>We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities.</description><subject>Asymptotic properties</subject><subject>Automatic</subject><subject>Automatic Control Engineering</subject><subject>Bismaleimides</subject><subject>Computer Science</subject><subject>Devices</subject><subject>Disturbances</subject><subject>Electric circuits</subject><subject>Engineering Sciences</subject><subject>Hybrid systems</subject><subject>Irregularities</subject><subject>LMI</subject><subject>Lyapunov theory</subject><subject>Practical switching stabilization</subject><subject>PWA systems</subject><subject>Searching</subject><subject>Stabilization</subject><issn>1751-570X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxXMAiTH4Apx6hEOLnabNiriM8WeThuAAErcozVwtU9eWpBsan55WRRw52bJ-fn5-jF0gRAiYXm-iSq99xAF5BBgB4BEboUwwTCR8nLBT7zcAScYnYsTuX502rTW6DHyrc1vab93augqK2gWNJUNf1lOoi8JWFPiDb2nrb4JpcPe8CHTTuFqb9Rk7LnTp6fy3jtn748PbbB4uX54Ws-kyNHEq23AFfJJJXeQ8kxPkmYBcCi4hTnmRUIIJgpZCZAlHqbOuIQEpUQ4FIuaE8ZhdDbprXarG2a12B1Vrq-bTpepnAJILkcb7nr0c2M7i5458q7bWGypLXVG98wqB86wzJLIO5QNqXO29o-JPG0H1kaqN6iNVfaQKsDvT698OS9Q9vLfklDeWKkMr68i0alXb_9Z_ABhifqI</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Kamri, D.</creator><creator>Bourdais, R.</creator><creator>Buisson, J.</creator><creator>Larbes, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8332-0939</orcidid></search><sort><creationdate>201208</creationdate><title>Practical stabilization for piecewise-affine systems: A BMI approach</title><author>Kamri, D. ; Bourdais, R. ; Buisson, J. ; Larbes, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Automatic</topic><topic>Automatic Control Engineering</topic><topic>Bismaleimides</topic><topic>Computer Science</topic><topic>Devices</topic><topic>Disturbances</topic><topic>Electric circuits</topic><topic>Engineering Sciences</topic><topic>Hybrid systems</topic><topic>Irregularities</topic><topic>LMI</topic><topic>Lyapunov theory</topic><topic>Practical switching stabilization</topic><topic>PWA systems</topic><topic>Searching</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamri, D.</creatorcontrib><creatorcontrib>Bourdais, R.</creatorcontrib><creatorcontrib>Buisson, J.</creatorcontrib><creatorcontrib>Larbes, C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear analysis. Hybrid systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamri, D.</au><au>Bourdais, R.</au><au>Buisson, J.</au><au>Larbes, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical stabilization for piecewise-affine systems: A BMI approach</atitle><jtitle>Nonlinear analysis. Hybrid systems</jtitle><date>2012-08</date><risdate>2012</risdate><volume>6</volume><issue>3</issue><spage>859</spage><epage>870</epage><pages>859-870</pages><issn>1751-570X</issn><abstract>We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nahs.2012.01.001</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8332-0939</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-570X
ispartof Nonlinear analysis. Hybrid systems, 2012-08, Vol.6 (3), p.859-870
issn 1751-570X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00724463v1
source Elsevier ScienceDirect Journals Complete
subjects Asymptotic properties
Automatic
Automatic Control Engineering
Bismaleimides
Computer Science
Devices
Disturbances
Electric circuits
Engineering Sciences
Hybrid systems
Irregularities
LMI
Lyapunov theory
Practical switching stabilization
PWA systems
Searching
Stabilization
title Practical stabilization for piecewise-affine systems: A BMI approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20stabilization%20for%20piecewise-affine%20systems:%20A%20BMI%20approach&rft.jtitle=Nonlinear%20analysis.%20Hybrid%20systems&rft.au=Kamri,%20D.&rft.date=2012-08&rft.volume=6&rft.issue=3&rft.spage=859&rft.epage=870&rft.pages=859-870&rft.issn=1751-570X&rft_id=info:doi/10.1016/j.nahs.2012.01.001&rft_dat=%3Cproquest_hal_p%3E1022902849%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022902849&rft_id=info:pmid/&rft_els_id=S1751570X12000027&rfr_iscdi=true