Practical stabilization for piecewise-affine systems: A BMI approach
We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis. Hybrid systems 2012-08, Vol.6 (3), p.859-870 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 870 |
---|---|
container_issue | 3 |
container_start_page | 859 |
container_title | Nonlinear analysis. Hybrid systems |
container_volume | 6 |
creator | Kamri, D. Bourdais, R. Buisson, J. Larbes, C. |
description | We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities. |
doi_str_mv | 10.1016/j.nahs.2012.01.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00724463v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751570X12000027</els_id><sourcerecordid>1022902849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxXMAiTH4Apx6hEOLnabNiriM8WeThuAAErcozVwtU9eWpBsan55WRRw52bJ-fn5-jF0gRAiYXm-iSq99xAF5BBgB4BEboUwwTCR8nLBT7zcAScYnYsTuX502rTW6DHyrc1vab93augqK2gWNJUNf1lOoi8JWFPiDb2nrb4JpcPe8CHTTuFqb9Rk7LnTp6fy3jtn748PbbB4uX54Ws-kyNHEq23AFfJJJXeQ8kxPkmYBcCi4hTnmRUIIJgpZCZAlHqbOuIQEpUQ4FIuaE8ZhdDbprXarG2a12B1Vrq-bTpepnAJILkcb7nr0c2M7i5458q7bWGypLXVG98wqB86wzJLIO5QNqXO29o-JPG0H1kaqN6iNVfaQKsDvT698OS9Q9vLfklDeWKkMr68i0alXb_9Z_ABhifqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022902849</pqid></control><display><type>article</type><title>Practical stabilization for piecewise-affine systems: A BMI approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kamri, D. ; Bourdais, R. ; Buisson, J. ; Larbes, C.</creator><creatorcontrib>Kamri, D. ; Bourdais, R. ; Buisson, J. ; Larbes, C.</creatorcontrib><description>We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities.</description><identifier>ISSN: 1751-570X</identifier><identifier>DOI: 10.1016/j.nahs.2012.01.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymptotic properties ; Automatic ; Automatic Control Engineering ; Bismaleimides ; Computer Science ; Devices ; Disturbances ; Electric circuits ; Engineering Sciences ; Hybrid systems ; Irregularities ; LMI ; Lyapunov theory ; Practical switching stabilization ; PWA systems ; Searching ; Stabilization</subject><ispartof>Nonlinear analysis. Hybrid systems, 2012-08, Vol.6 (3), p.859-870</ispartof><rights>2012 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</citedby><cites>FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</cites><orcidid>0000-0001-8332-0939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nahs.2012.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-00724463$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamri, D.</creatorcontrib><creatorcontrib>Bourdais, R.</creatorcontrib><creatorcontrib>Buisson, J.</creatorcontrib><creatorcontrib>Larbes, C.</creatorcontrib><title>Practical stabilization for piecewise-affine systems: A BMI approach</title><title>Nonlinear analysis. Hybrid systems</title><description>We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities.</description><subject>Asymptotic properties</subject><subject>Automatic</subject><subject>Automatic Control Engineering</subject><subject>Bismaleimides</subject><subject>Computer Science</subject><subject>Devices</subject><subject>Disturbances</subject><subject>Electric circuits</subject><subject>Engineering Sciences</subject><subject>Hybrid systems</subject><subject>Irregularities</subject><subject>LMI</subject><subject>Lyapunov theory</subject><subject>Practical switching stabilization</subject><subject>PWA systems</subject><subject>Searching</subject><subject>Stabilization</subject><issn>1751-570X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxXMAiTH4Apx6hEOLnabNiriM8WeThuAAErcozVwtU9eWpBsan55WRRw52bJ-fn5-jF0gRAiYXm-iSq99xAF5BBgB4BEboUwwTCR8nLBT7zcAScYnYsTuX502rTW6DHyrc1vab93augqK2gWNJUNf1lOoi8JWFPiDb2nrb4JpcPe8CHTTuFqb9Rk7LnTp6fy3jtn748PbbB4uX54Ws-kyNHEq23AFfJJJXeQ8kxPkmYBcCi4hTnmRUIIJgpZCZAlHqbOuIQEpUQ4FIuaE8ZhdDbprXarG2a12B1Vrq-bTpepnAJILkcb7nr0c2M7i5458q7bWGypLXVG98wqB86wzJLIO5QNqXO29o-JPG0H1kaqN6iNVfaQKsDvT698OS9Q9vLfklDeWKkMr68i0alXb_9Z_ABhifqI</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Kamri, D.</creator><creator>Bourdais, R.</creator><creator>Buisson, J.</creator><creator>Larbes, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8332-0939</orcidid></search><sort><creationdate>201208</creationdate><title>Practical stabilization for piecewise-affine systems: A BMI approach</title><author>Kamri, D. ; Bourdais, R. ; Buisson, J. ; Larbes, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-d02897afb297812940b74270362f5e51510a74495217a9449e406eeb0f111be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Automatic</topic><topic>Automatic Control Engineering</topic><topic>Bismaleimides</topic><topic>Computer Science</topic><topic>Devices</topic><topic>Disturbances</topic><topic>Electric circuits</topic><topic>Engineering Sciences</topic><topic>Hybrid systems</topic><topic>Irregularities</topic><topic>LMI</topic><topic>Lyapunov theory</topic><topic>Practical switching stabilization</topic><topic>PWA systems</topic><topic>Searching</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamri, D.</creatorcontrib><creatorcontrib>Bourdais, R.</creatorcontrib><creatorcontrib>Buisson, J.</creatorcontrib><creatorcontrib>Larbes, C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear analysis. Hybrid systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamri, D.</au><au>Bourdais, R.</au><au>Buisson, J.</au><au>Larbes, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical stabilization for piecewise-affine systems: A BMI approach</atitle><jtitle>Nonlinear analysis. Hybrid systems</jtitle><date>2012-08</date><risdate>2012</risdate><volume>6</volume><issue>3</issue><spage>859</spage><epage>870</epage><pages>859-870</pages><issn>1751-570X</issn><abstract>We propose in this paper, a systematic switching practical stabilization method for PWA switched systems around an average equilibrium. For these systems, the main difficulty comes from the fact that to end in BMI formulation, it is necessary to represent the system in an augmented state space but a restricted one. However, the derived stabilizing conditions are not tractable as BMI in the restricted domain. We will present a method that overcomes this difficulty and drives asymptotically system states into a ball centered on the desired non-equilibrium reference. The efficiency of this practical stabilization method is showed by the ball smallness and the good robustness against disturbances. The design control searches for a single Lyapunov-like function and an appropriate continuous state space partition to satisfy stabilizing properties. Therefore, the method constitutes a simple systematic state feedback computation; it may be useful for on-line applications. As a direct application, satisfactory simulation results are obtained for two illustrative examples, a Buck–Boost converter and a multilevel one. Due to their functioning nature, these devices constitute good examples of switched systems. They are electrical circuits controlled by switches to produce regulated outputs despite the load disturbances and power supply irregularities.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nahs.2012.01.001</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8332-0939</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-570X |
ispartof | Nonlinear analysis. Hybrid systems, 2012-08, Vol.6 (3), p.859-870 |
issn | 1751-570X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00724463v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Asymptotic properties Automatic Automatic Control Engineering Bismaleimides Computer Science Devices Disturbances Electric circuits Engineering Sciences Hybrid systems Irregularities LMI Lyapunov theory Practical switching stabilization PWA systems Searching Stabilization |
title | Practical stabilization for piecewise-affine systems: A BMI approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20stabilization%20for%20piecewise-affine%20systems:%20A%20BMI%20approach&rft.jtitle=Nonlinear%20analysis.%20Hybrid%20systems&rft.au=Kamri,%20D.&rft.date=2012-08&rft.volume=6&rft.issue=3&rft.spage=859&rft.epage=870&rft.pages=859-870&rft.issn=1751-570X&rft_id=info:doi/10.1016/j.nahs.2012.01.001&rft_dat=%3Cproquest_hal_p%3E1022902849%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022902849&rft_id=info:pmid/&rft_els_id=S1751570X12000027&rfr_iscdi=true |