Convex Computation of the Region of Attraction of Polynomial Control Systems
We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2014-02, Vol.59 (2), p.297-312 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 2 |
container_start_page | 297 |
container_title | IEEE transactions on automatic control |
container_volume | 59 |
creator | Henrion, Didier Korda, Milan |
description | We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples. |
doi_str_mv | 10.1109/TAC.2013.2283095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00723019v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6606873</ieee_id><sourcerecordid>3242326771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeAJw-pM7vZjxxDUCsEFK3nZZtubEqSrcm22P_eLa09DfPm9x7DI-QWYYII6eMsyycUkE0oVQxSfkZGyLmKKafsnIwAUMUpVeKSXA3DKqwiSXBEitx1W_sb5a5db7zxtesiV0V-aaMP-33cMu97U_7f3l2z61xbmya4Ot-7JvrcDd62wzW5qEwz2JvjHJOv56dZPo2Lt5fXPCvikgnp49TIhNOKIsxRpYZJw4HRFJmkFZRpadTcSpEsLPKgoFlwoeYoFAWwzErGxuThkLs0jV73dWv6nXam1tOs0HsNQFIGmG5pYO8P7Lp3Pxs7eL1ym74L72nkIJBKIWWg4ECVvRuG3lanWAS971eHfvW-X33sN1juDpbaWnvChQChwot_w9Bz8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506127677</pqid></control><display><type>article</type><title>Convex Computation of the Region of Attraction of Polynomial Control Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Henrion, Didier ; Korda, Milan</creator><creatorcontrib>Henrion, Didier ; Korda, Milan</creatorcontrib><description>We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2013.2283095</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation methods ; Capture basin ; convex optimization ; Linear matrix inequalities ; linear matrix inequalities (LMIs) ; Linear programming ; Mathematics ; occupation measures ; Optimization and Control ; polynomial control systems ; Polynomials ; reachable set ; region of attraction ; Time measurement ; Trajectory ; viability theory ; Volume measurement</subject><ispartof>IEEE transactions on automatic control, 2014-02, Vol.59 (2), p.297-312</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</citedby><cites>FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</cites><orcidid>0000-0001-6735-7715 ; 0000-0002-5755-8326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6606873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6606873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00723019$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Korda, Milan</creatorcontrib><title>Convex Computation of the Region of Attraction of Polynomial Control Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples.</description><subject>Algorithms</subject><subject>Approximation methods</subject><subject>Capture basin</subject><subject>convex optimization</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>occupation measures</subject><subject>Optimization and Control</subject><subject>polynomial control systems</subject><subject>Polynomials</subject><subject>reachable set</subject><subject>region of attraction</subject><subject>Time measurement</subject><subject>Trajectory</subject><subject>viability theory</subject><subject>Volume measurement</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeAJw-pM7vZjxxDUCsEFK3nZZtubEqSrcm22P_eLa09DfPm9x7DI-QWYYII6eMsyycUkE0oVQxSfkZGyLmKKafsnIwAUMUpVeKSXA3DKqwiSXBEitx1W_sb5a5db7zxtesiV0V-aaMP-33cMu97U_7f3l2z61xbmya4Ot-7JvrcDd62wzW5qEwz2JvjHJOv56dZPo2Lt5fXPCvikgnp49TIhNOKIsxRpYZJw4HRFJmkFZRpadTcSpEsLPKgoFlwoeYoFAWwzErGxuThkLs0jV73dWv6nXam1tOs0HsNQFIGmG5pYO8P7Lp3Pxs7eL1ym74L72nkIJBKIWWg4ECVvRuG3lanWAS971eHfvW-X33sN1juDpbaWnvChQChwot_w9Bz8Q</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Henrion, Didier</creator><creator>Korda, Milan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5755-8326</orcidid></search><sort><creationdate>20140201</creationdate><title>Convex Computation of the Region of Attraction of Polynomial Control Systems</title><author>Henrion, Didier ; Korda, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation methods</topic><topic>Capture basin</topic><topic>convex optimization</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>occupation measures</topic><topic>Optimization and Control</topic><topic>polynomial control systems</topic><topic>Polynomials</topic><topic>reachable set</topic><topic>region of attraction</topic><topic>Time measurement</topic><topic>Trajectory</topic><topic>viability theory</topic><topic>Volume measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Korda, Milan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Henrion, Didier</au><au>Korda, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex Computation of the Region of Attraction of Polynomial Control Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>59</volume><issue>2</issue><spage>297</spage><epage>312</epage><pages>297-312</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2013.2283095</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5755-8326</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2014-02, Vol.59 (2), p.297-312 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00723019v2 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation methods Capture basin convex optimization Linear matrix inequalities linear matrix inequalities (LMIs) Linear programming Mathematics occupation measures Optimization and Control polynomial control systems Polynomials reachable set region of attraction Time measurement Trajectory viability theory Volume measurement |
title | Convex Computation of the Region of Attraction of Polynomial Control Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20Computation%20of%20the%20Region%20of%20Attraction%20of%20Polynomial%20Control%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Henrion,%20Didier&rft.date=2014-02-01&rft.volume=59&rft.issue=2&rft.spage=297&rft.epage=312&rft.pages=297-312&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2013.2283095&rft_dat=%3Cproquest_RIE%3E3242326771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506127677&rft_id=info:pmid/&rft_ieee_id=6606873&rfr_iscdi=true |