Convex Computation of the Region of Attraction of Polynomial Control Systems

We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2014-02, Vol.59 (2), p.297-312
Hauptverfasser: Henrion, Didier, Korda, Milan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 2
container_start_page 297
container_title IEEE transactions on automatic control
container_volume 59
creator Henrion, Didier
Korda, Milan
description We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples.
doi_str_mv 10.1109/TAC.2013.2283095
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00723019v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6606873</ieee_id><sourcerecordid>3242326771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpeAJw-pM7vZjxxDUCsEFK3nZZtubEqSrcm22P_eLa09DfPm9x7DI-QWYYII6eMsyycUkE0oVQxSfkZGyLmKKafsnIwAUMUpVeKSXA3DKqwiSXBEitx1W_sb5a5db7zxtesiV0V-aaMP-33cMu97U_7f3l2z61xbmya4Ot-7JvrcDd62wzW5qEwz2JvjHJOv56dZPo2Lt5fXPCvikgnp49TIhNOKIsxRpYZJw4HRFJmkFZRpadTcSpEsLPKgoFlwoeYoFAWwzErGxuThkLs0jV73dWv6nXam1tOs0HsNQFIGmG5pYO8P7Lp3Pxs7eL1ym74L72nkIJBKIWWg4ECVvRuG3lanWAS971eHfvW-X33sN1juDpbaWnvChQChwot_w9Bz8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506127677</pqid></control><display><type>article</type><title>Convex Computation of the Region of Attraction of Polynomial Control Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Henrion, Didier ; Korda, Milan</creator><creatorcontrib>Henrion, Didier ; Korda, Milan</creatorcontrib><description>We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2013.2283095</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation methods ; Capture basin ; convex optimization ; Linear matrix inequalities ; linear matrix inequalities (LMIs) ; Linear programming ; Mathematics ; occupation measures ; Optimization and Control ; polynomial control systems ; Polynomials ; reachable set ; region of attraction ; Time measurement ; Trajectory ; viability theory ; Volume measurement</subject><ispartof>IEEE transactions on automatic control, 2014-02, Vol.59 (2), p.297-312</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</citedby><cites>FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</cites><orcidid>0000-0001-6735-7715 ; 0000-0002-5755-8326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6606873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6606873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00723019$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Korda, Milan</creatorcontrib><title>Convex Computation of the Region of Attraction of Polynomial Control Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples.</description><subject>Algorithms</subject><subject>Approximation methods</subject><subject>Capture basin</subject><subject>convex optimization</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>occupation measures</subject><subject>Optimization and Control</subject><subject>polynomial control systems</subject><subject>Polynomials</subject><subject>reachable set</subject><subject>region of attraction</subject><subject>Time measurement</subject><subject>Trajectory</subject><subject>viability theory</subject><subject>Volume measurement</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpeAJw-pM7vZjxxDUCsEFK3nZZtubEqSrcm22P_eLa09DfPm9x7DI-QWYYII6eMsyycUkE0oVQxSfkZGyLmKKafsnIwAUMUpVeKSXA3DKqwiSXBEitx1W_sb5a5db7zxtesiV0V-aaMP-33cMu97U_7f3l2z61xbmya4Ot-7JvrcDd62wzW5qEwz2JvjHJOv56dZPo2Lt5fXPCvikgnp49TIhNOKIsxRpYZJw4HRFJmkFZRpadTcSpEsLPKgoFlwoeYoFAWwzErGxuThkLs0jV73dWv6nXam1tOs0HsNQFIGmG5pYO8P7Lp3Pxs7eL1ym74L72nkIJBKIWWg4ECVvRuG3lanWAS971eHfvW-X33sN1juDpbaWnvChQChwot_w9Bz8Q</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Henrion, Didier</creator><creator>Korda, Milan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5755-8326</orcidid></search><sort><creationdate>20140201</creationdate><title>Convex Computation of the Region of Attraction of Polynomial Control Systems</title><author>Henrion, Didier ; Korda, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9a7452f210b189a37a503291372f0c9ca8be764de1572f1ad568b168200e3e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation methods</topic><topic>Capture basin</topic><topic>convex optimization</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>occupation measures</topic><topic>Optimization and Control</topic><topic>polynomial control systems</topic><topic>Polynomials</topic><topic>reachable set</topic><topic>region of attraction</topic><topic>Time measurement</topic><topic>Trajectory</topic><topic>viability theory</topic><topic>Volume measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henrion, Didier</creatorcontrib><creatorcontrib>Korda, Milan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Henrion, Didier</au><au>Korda, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex Computation of the Region of Attraction of Polynomial Control Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>59</volume><issue>2</issue><spage>297</spage><epage>312</epage><pages>297-312</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description. The approach is demonstrated on several numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2013.2283095</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5755-8326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2014-02, Vol.59 (2), p.297-312
issn 0018-9286
1558-2523
language eng
recordid cdi_hal_primary_oai_HAL_hal_00723019v2
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation methods
Capture basin
convex optimization
Linear matrix inequalities
linear matrix inequalities (LMIs)
Linear programming
Mathematics
occupation measures
Optimization and Control
polynomial control systems
Polynomials
reachable set
region of attraction
Time measurement
Trajectory
viability theory
Volume measurement
title Convex Computation of the Region of Attraction of Polynomial Control Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20Computation%20of%20the%20Region%20of%20Attraction%20of%20Polynomial%20Control%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Henrion,%20Didier&rft.date=2014-02-01&rft.volume=59&rft.issue=2&rft.spage=297&rft.epage=312&rft.pages=297-312&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2013.2283095&rft_dat=%3Cproquest_RIE%3E3242326771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506127677&rft_id=info:pmid/&rft_ieee_id=6606873&rfr_iscdi=true