Voronoi diagrams of algebraic distance fields

We design and implement an efficient and certified algorithm for the computation of Voronoï diagrams (VDs) constrained to a given domain. Our framework is general and applicable to any VD-type where the distance field is given explicitly or implicitly by a polynomial, notably the anisotropic VD or V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2013-02, Vol.45 (2), p.511-516
Hauptverfasser: Emiris, Ioannis Z., Mantzaflaris, Angelos, Mourrain, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 2
container_start_page 511
container_title Computer aided design
container_volume 45
creator Emiris, Ioannis Z.
Mantzaflaris, Angelos
Mourrain, Bernard
description We design and implement an efficient and certified algorithm for the computation of Voronoï diagrams (VDs) constrained to a given domain. Our framework is general and applicable to any VD-type where the distance field is given explicitly or implicitly by a polynomial, notably the anisotropic VD or VDs of non-punctual sites. We use the Bernstein form of polynomials and DeCasteljau’s algorithm to subdivide the initial domain and isolate bisector, or domains that contain a Voronoï vertex. The efficiency of our algorithm is due to a filtering process, based on bounding the field over the subdivided domains. This allows to exclude functions (thus sites) that do not contribute locally to the lower envelope of the lifted diagram. The output is a polygonal description of each Voronoï cell, within any user-defined precision, isotopic to the exact VD. Correctness of the result is implied by the certified approximations of bisector branches, which are computed by existing methods for handling algebraic curves. First experiments with our C++ implementation, based on double precision arithmetic, demonstrate the adaptability of the algorithm. [Display omitted] ► We present a general framework for VD computation based on subdivision and filtering. ► Implicit or explicit distance fields of arbitrary algebraic degree are allowed. ► Effective use of Bernstein representation in tracking bisectors and Voronoï vertices. ► Tests on Euclidean, lp, anisotropic sites, extension to circular, elliptic sites. ► By assigning a different metric per site, mixed Voronoï diagrams are also supported.
doi_str_mv 10.1016/j.cad.2012.10.043
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00722406v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448512002485</els_id><sourcerecordid>1283658083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-38099c05b4dacac90d6b51e6d7a02f8b6bede4688d2e510e838ea26e14d94e7b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG896qF1kqZpiqdlUVdY8KJeQ5pM1yzdzZp0F_z3plQ8ehrm5XkH5iHkhkJBgYr7TWG0LRhQlvYCeHlCZlTWTc6ErE7JDIBCzrmszslFjBsAYLRsZiT_8MHvvMus0-ugtzHzXab7NbZBO5PSOOidwaxz2Nt4Rc463Ue8_p2X5P3p8W2xzFevzy-L-So3HOohLyU0jYGq5VYbbRqwoq0oCltrYJ1sRYsWuZDSMqwooCwlaiaQcttwrNvyktxNdz91r_bBbXX4Vl47tZyv1JgB1IxxEEea2NuJ3Qf_dcA4qK2LBvte79AfoqJMlqKSIMuE0gk1wccYsPu7TUGNGtVGJY1q1DhGSWPqPEwdTP8eHQYVjcOkxLqAZlDWu3_aPxhCeJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283658083</pqid></control><display><type>article</type><title>Voronoi diagrams of algebraic distance fields</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Emiris, Ioannis Z. ; Mantzaflaris, Angelos ; Mourrain, Bernard</creator><creatorcontrib>Emiris, Ioannis Z. ; Mantzaflaris, Angelos ; Mourrain, Bernard</creatorcontrib><description>We design and implement an efficient and certified algorithm for the computation of Voronoï diagrams (VDs) constrained to a given domain. Our framework is general and applicable to any VD-type where the distance field is given explicitly or implicitly by a polynomial, notably the anisotropic VD or VDs of non-punctual sites. We use the Bernstein form of polynomials and DeCasteljau’s algorithm to subdivide the initial domain and isolate bisector, or domains that contain a Voronoï vertex. The efficiency of our algorithm is due to a filtering process, based on bounding the field over the subdivided domains. This allows to exclude functions (thus sites) that do not contribute locally to the lower envelope of the lifted diagram. The output is a polygonal description of each Voronoï cell, within any user-defined precision, isotopic to the exact VD. Correctness of the result is implied by the certified approximations of bisector branches, which are computed by existing methods for handling algebraic curves. First experiments with our C++ implementation, based on double precision arithmetic, demonstrate the adaptability of the algorithm. [Display omitted] ► We present a general framework for VD computation based on subdivision and filtering. ► Implicit or explicit distance fields of arbitrary algebraic degree are allowed. ► Effective use of Bernstein representation in tracking bisectors and Voronoï vertices. ► Tests on Euclidean, lp, anisotropic sites, extension to circular, elliptic sites. ► By assigning a different metric per site, mixed Voronoï diagrams are also supported.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2012.10.043</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Algorithms ; Anisotropic diagram ; Approximation ; Bisector curve ; Computation ; Computational Geometry ; Computer aided design ; Computer Science ; Filtering ; Filtration ; Lower envelope ; Mathematical analysis ; Subdivision algorithm ; Symbolic Computation ; Voronoï diagram</subject><ispartof>Computer aided design, 2013-02, Vol.45 (2), p.511-516</ispartof><rights>2012 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-38099c05b4dacac90d6b51e6d7a02f8b6bede4688d2e510e838ea26e14d94e7b3</citedby><cites>FETCH-LOGICAL-c407t-38099c05b4dacac90d6b51e6d7a02f8b6bede4688d2e510e838ea26e14d94e7b3</cites><orcidid>0000-0001-7135-1084 ; 0000-0002-2339-5303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010448512002485$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00722406$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Emiris, Ioannis Z.</creatorcontrib><creatorcontrib>Mantzaflaris, Angelos</creatorcontrib><creatorcontrib>Mourrain, Bernard</creatorcontrib><title>Voronoi diagrams of algebraic distance fields</title><title>Computer aided design</title><description>We design and implement an efficient and certified algorithm for the computation of Voronoï diagrams (VDs) constrained to a given domain. Our framework is general and applicable to any VD-type where the distance field is given explicitly or implicitly by a polynomial, notably the anisotropic VD or VDs of non-punctual sites. We use the Bernstein form of polynomials and DeCasteljau’s algorithm to subdivide the initial domain and isolate bisector, or domains that contain a Voronoï vertex. The efficiency of our algorithm is due to a filtering process, based on bounding the field over the subdivided domains. This allows to exclude functions (thus sites) that do not contribute locally to the lower envelope of the lifted diagram. The output is a polygonal description of each Voronoï cell, within any user-defined precision, isotopic to the exact VD. Correctness of the result is implied by the certified approximations of bisector branches, which are computed by existing methods for handling algebraic curves. First experiments with our C++ implementation, based on double precision arithmetic, demonstrate the adaptability of the algorithm. [Display omitted] ► We present a general framework for VD computation based on subdivision and filtering. ► Implicit or explicit distance fields of arbitrary algebraic degree are allowed. ► Effective use of Bernstein representation in tracking bisectors and Voronoï vertices. ► Tests on Euclidean, lp, anisotropic sites, extension to circular, elliptic sites. ► By assigning a different metric per site, mixed Voronoï diagrams are also supported.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Anisotropic diagram</subject><subject>Approximation</subject><subject>Bisector curve</subject><subject>Computation</subject><subject>Computational Geometry</subject><subject>Computer aided design</subject><subject>Computer Science</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Lower envelope</subject><subject>Mathematical analysis</subject><subject>Subdivision algorithm</subject><subject>Symbolic Computation</subject><subject>Voronoï diagram</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG896qF1kqZpiqdlUVdY8KJeQ5pM1yzdzZp0F_z3plQ8ehrm5XkH5iHkhkJBgYr7TWG0LRhQlvYCeHlCZlTWTc6ErE7JDIBCzrmszslFjBsAYLRsZiT_8MHvvMus0-ugtzHzXab7NbZBO5PSOOidwaxz2Nt4Rc463Ue8_p2X5P3p8W2xzFevzy-L-So3HOohLyU0jYGq5VYbbRqwoq0oCltrYJ1sRYsWuZDSMqwooCwlaiaQcttwrNvyktxNdz91r_bBbXX4Vl47tZyv1JgB1IxxEEea2NuJ3Qf_dcA4qK2LBvte79AfoqJMlqKSIMuE0gk1wccYsPu7TUGNGtVGJY1q1DhGSWPqPEwdTP8eHQYVjcOkxLqAZlDWu3_aPxhCeJ0</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Emiris, Ioannis Z.</creator><creator>Mantzaflaris, Angelos</creator><creator>Mourrain, Bernard</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7135-1084</orcidid><orcidid>https://orcid.org/0000-0002-2339-5303</orcidid></search><sort><creationdate>201302</creationdate><title>Voronoi diagrams of algebraic distance fields</title><author>Emiris, Ioannis Z. ; Mantzaflaris, Angelos ; Mourrain, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-38099c05b4dacac90d6b51e6d7a02f8b6bede4688d2e510e838ea26e14d94e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Anisotropic diagram</topic><topic>Approximation</topic><topic>Bisector curve</topic><topic>Computation</topic><topic>Computational Geometry</topic><topic>Computer aided design</topic><topic>Computer Science</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Lower envelope</topic><topic>Mathematical analysis</topic><topic>Subdivision algorithm</topic><topic>Symbolic Computation</topic><topic>Voronoï diagram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emiris, Ioannis Z.</creatorcontrib><creatorcontrib>Mantzaflaris, Angelos</creatorcontrib><creatorcontrib>Mourrain, Bernard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emiris, Ioannis Z.</au><au>Mantzaflaris, Angelos</au><au>Mourrain, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voronoi diagrams of algebraic distance fields</atitle><jtitle>Computer aided design</jtitle><date>2013-02</date><risdate>2013</risdate><volume>45</volume><issue>2</issue><spage>511</spage><epage>516</epage><pages>511-516</pages><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>We design and implement an efficient and certified algorithm for the computation of Voronoï diagrams (VDs) constrained to a given domain. Our framework is general and applicable to any VD-type where the distance field is given explicitly or implicitly by a polynomial, notably the anisotropic VD or VDs of non-punctual sites. We use the Bernstein form of polynomials and DeCasteljau’s algorithm to subdivide the initial domain and isolate bisector, or domains that contain a Voronoï vertex. The efficiency of our algorithm is due to a filtering process, based on bounding the field over the subdivided domains. This allows to exclude functions (thus sites) that do not contribute locally to the lower envelope of the lifted diagram. The output is a polygonal description of each Voronoï cell, within any user-defined precision, isotopic to the exact VD. Correctness of the result is implied by the certified approximations of bisector branches, which are computed by existing methods for handling algebraic curves. First experiments with our C++ implementation, based on double precision arithmetic, demonstrate the adaptability of the algorithm. [Display omitted] ► We present a general framework for VD computation based on subdivision and filtering. ► Implicit or explicit distance fields of arbitrary algebraic degree are allowed. ► Effective use of Bernstein representation in tracking bisectors and Voronoï vertices. ► Tests on Euclidean, lp, anisotropic sites, extension to circular, elliptic sites. ► By assigning a different metric per site, mixed Voronoï diagrams are also supported.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2012.10.043</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7135-1084</orcidid><orcidid>https://orcid.org/0000-0002-2339-5303</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2013-02, Vol.45 (2), p.511-516
issn 0010-4485
1879-2685
language eng
recordid cdi_hal_primary_oai_HAL_hal_00722406v1
source Elsevier ScienceDirect Journals Complete
subjects Algebra
Algorithms
Anisotropic diagram
Approximation
Bisector curve
Computation
Computational Geometry
Computer aided design
Computer Science
Filtering
Filtration
Lower envelope
Mathematical analysis
Subdivision algorithm
Symbolic Computation
Voronoï diagram
title Voronoi diagrams of algebraic distance fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voronoi%20diagrams%20of%20algebraic%20distance%20fields&rft.jtitle=Computer%20aided%20design&rft.au=Emiris,%20Ioannis%20Z.&rft.date=2013-02&rft.volume=45&rft.issue=2&rft.spage=511&rft.epage=516&rft.pages=511-516&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2012.10.043&rft_dat=%3Cproquest_hal_p%3E1283658083%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283658083&rft_id=info:pmid/&rft_els_id=S0010448512002485&rfr_iscdi=true