Thermo-mechanical and fracture properties in single-crystal silicon

Single-crystal silicon is extensively used in the semiconductor industry. Even though most of the steps during processing involve somehow thermo-mechanical treatment of silicon, we will focus on two main domains where these properties play a major role: cleaving techniques used to obtain a thin sili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2013-02, Vol.48 (3), p.979-988
Hauptverfasser: Masolin, Alex, Bouchard, Pierre-Olivier, Martini, Roberto, Bernacki, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 988
container_issue 3
container_start_page 979
container_title Journal of materials science
container_volume 48
creator Masolin, Alex
Bouchard, Pierre-Olivier
Martini, Roberto
Bernacki, Marc
description Single-crystal silicon is extensively used in the semiconductor industry. Even though most of the steps during processing involve somehow thermo-mechanical treatment of silicon, we will focus on two main domains where these properties play a major role: cleaving techniques used to obtain a thin silicon layer for photovoltaic applications and MEMS. The evolution and validation of these new processes often rely on numerical simulations. The accuracy of these simulations, however, requires accurate input data for a wide temperature range. Numerous studies have been performed, and most of the needed parameters are generally available in the literature, but unfortunately, some discrepancies are observed in terms of measured data regarding fracture mechanics parameters. The aim of this article is to gather all these data and discuss the validity of these properties between room temperature and 1273 K. Particular attention is given to silicon fracture properties depending on crystallographic orientations, and to the brittle–ductile temperature transition which can strongly affect the quality of silicon layers.
doi_str_mv 10.1007/s10853-012-6713-7
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00720597v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A334042237</galeid><sourcerecordid>A334042237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-92689e4433611b0e290a1c9c561a1883fea1eb28a6d32a1c9bf34c8e11a57ee23</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVIIZs0PyA3Qy_tQalGki37uCxtN7AQaLdnodWOvQq2vJXskv33lfHSkEDQQTDzvWHmPULugN0DY-prBFbmgjLgtFAgqLogC8iVoLJk4pIsGOOcclnAFbmO8YkxlisOC7LaHjB0Pe3QHox31rSZ8fusDsYOY8DsGPojhsFhzJzPovNNi9SGUxwSGV3rbO8_kg-1aSPenv8b8vv7t-1qTTePPx5Wyw21eZEPtOJFWaGUQhQAO4a8YgZslZpgoCxFjQZwx0tT7AWfOrtaSFsigMkVIhc35Ms892BafQyuM-Gke-P0ernRUy0ZwVleqb-Q2M8zmw74M2IcdOeixbY1HvsxapCiUnmZrEropzfoUz8Gny7RnKdpEqqqSNT9TDWmRe183Q_Jo_T22E0mYO1SfSmEZJJzoV62PQsSM-Dz0JgxRv3w6-drFmbWhj7GgPX_84DpKV8956tTvnrKV08aPmtiYn2D4WXt90X_AO2_pJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259741996</pqid></control><display><type>article</type><title>Thermo-mechanical and fracture properties in single-crystal silicon</title><source>SpringerLink Journals</source><creator>Masolin, Alex ; Bouchard, Pierre-Olivier ; Martini, Roberto ; Bernacki, Marc</creator><creatorcontrib>Masolin, Alex ; Bouchard, Pierre-Olivier ; Martini, Roberto ; Bernacki, Marc</creatorcontrib><description>Single-crystal silicon is extensively used in the semiconductor industry. Even though most of the steps during processing involve somehow thermo-mechanical treatment of silicon, we will focus on two main domains where these properties play a major role: cleaving techniques used to obtain a thin silicon layer for photovoltaic applications and MEMS. The evolution and validation of these new processes often rely on numerical simulations. The accuracy of these simulations, however, requires accurate input data for a wide temperature range. Numerous studies have been performed, and most of the needed parameters are generally available in the literature, but unfortunately, some discrepancies are observed in terms of measured data regarding fracture mechanics parameters. The aim of this article is to gather all these data and discuss the validity of these properties between room temperature and 1273 K. Particular attention is given to silicon fracture properties depending on crystallographic orientations, and to the brittle–ductile temperature transition which can strongly affect the quality of silicon layers.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-012-6713-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Computer simulation ; Crystallography ; Crystallography and Scattering Methods ; Domains ; Ductile fracture ; Ductile-brittle transition ; Engineering Sciences ; Evolution ; Fracture mechanics ; Materials ; Materials Science ; Mathematical models ; Mechanical properties ; Microelectromechanical systems ; Parameters ; Polymer Sciences ; Properties (attributes) ; Review ; Semiconductors ; Silicon ; Single crystals ; Solid Mechanics ; Thermomechanical properties ; Thermomechanical treatment ; Thin films ; Toy industry</subject><ispartof>Journal of materials science, 2013-02, Vol.48 (3), p.979-988</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2012). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-92689e4433611b0e290a1c9c561a1883fea1eb28a6d32a1c9bf34c8e11a57ee23</citedby><cites>FETCH-LOGICAL-c565t-92689e4433611b0e290a1c9c561a1883fea1eb28a6d32a1c9bf34c8e11a57ee23</cites><orcidid>0000-0002-6677-2850 ; 0000-0002-1400-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-012-6713-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-012-6713-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00720597$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Masolin, Alex</creatorcontrib><creatorcontrib>Bouchard, Pierre-Olivier</creatorcontrib><creatorcontrib>Martini, Roberto</creatorcontrib><creatorcontrib>Bernacki, Marc</creatorcontrib><title>Thermo-mechanical and fracture properties in single-crystal silicon</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Single-crystal silicon is extensively used in the semiconductor industry. Even though most of the steps during processing involve somehow thermo-mechanical treatment of silicon, we will focus on two main domains where these properties play a major role: cleaving techniques used to obtain a thin silicon layer for photovoltaic applications and MEMS. The evolution and validation of these new processes often rely on numerical simulations. The accuracy of these simulations, however, requires accurate input data for a wide temperature range. Numerous studies have been performed, and most of the needed parameters are generally available in the literature, but unfortunately, some discrepancies are observed in terms of measured data regarding fracture mechanics parameters. The aim of this article is to gather all these data and discuss the validity of these properties between room temperature and 1273 K. Particular attention is given to silicon fracture properties depending on crystallographic orientations, and to the brittle–ductile temperature transition which can strongly affect the quality of silicon layers.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Crystallography</subject><subject>Crystallography and Scattering Methods</subject><subject>Domains</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Engineering Sciences</subject><subject>Evolution</subject><subject>Fracture mechanics</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microelectromechanical systems</subject><subject>Parameters</subject><subject>Polymer Sciences</subject><subject>Properties (attributes)</subject><subject>Review</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Solid Mechanics</subject><subject>Thermomechanical properties</subject><subject>Thermomechanical treatment</subject><subject>Thin films</subject><subject>Toy industry</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUFr3DAQhUVIIZs0PyA3Qy_tQalGki37uCxtN7AQaLdnodWOvQq2vJXskv33lfHSkEDQQTDzvWHmPULugN0DY-prBFbmgjLgtFAgqLogC8iVoLJk4pIsGOOcclnAFbmO8YkxlisOC7LaHjB0Pe3QHox31rSZ8fusDsYOY8DsGPojhsFhzJzPovNNi9SGUxwSGV3rbO8_kg-1aSPenv8b8vv7t-1qTTePPx5Wyw21eZEPtOJFWaGUQhQAO4a8YgZslZpgoCxFjQZwx0tT7AWfOrtaSFsigMkVIhc35Ms892BafQyuM-Gke-P0ernRUy0ZwVleqb-Q2M8zmw74M2IcdOeixbY1HvsxapCiUnmZrEropzfoUz8Gny7RnKdpEqqqSNT9TDWmRe183Q_Jo_T22E0mYO1SfSmEZJJzoV62PQsSM-Dz0JgxRv3w6-drFmbWhj7GgPX_84DpKV8956tTvnrKV08aPmtiYn2D4WXt90X_AO2_pJA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Masolin, Alex</creator><creator>Bouchard, Pierre-Olivier</creator><creator>Martini, Roberto</creator><creator>Bernacki, Marc</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6677-2850</orcidid><orcidid>https://orcid.org/0000-0002-1400-5799</orcidid></search><sort><creationdate>20130201</creationdate><title>Thermo-mechanical and fracture properties in single-crystal silicon</title><author>Masolin, Alex ; Bouchard, Pierre-Olivier ; Martini, Roberto ; Bernacki, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-92689e4433611b0e290a1c9c561a1883fea1eb28a6d32a1c9bf34c8e11a57ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Crystallography</topic><topic>Crystallography and Scattering Methods</topic><topic>Domains</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Engineering Sciences</topic><topic>Evolution</topic><topic>Fracture mechanics</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microelectromechanical systems</topic><topic>Parameters</topic><topic>Polymer Sciences</topic><topic>Properties (attributes)</topic><topic>Review</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Solid Mechanics</topic><topic>Thermomechanical properties</topic><topic>Thermomechanical treatment</topic><topic>Thin films</topic><topic>Toy industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masolin, Alex</creatorcontrib><creatorcontrib>Bouchard, Pierre-Olivier</creatorcontrib><creatorcontrib>Martini, Roberto</creatorcontrib><creatorcontrib>Bernacki, Marc</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masolin, Alex</au><au>Bouchard, Pierre-Olivier</au><au>Martini, Roberto</au><au>Bernacki, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical and fracture properties in single-crystal silicon</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>48</volume><issue>3</issue><spage>979</spage><epage>988</epage><pages>979-988</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Single-crystal silicon is extensively used in the semiconductor industry. Even though most of the steps during processing involve somehow thermo-mechanical treatment of silicon, we will focus on two main domains where these properties play a major role: cleaving techniques used to obtain a thin silicon layer for photovoltaic applications and MEMS. The evolution and validation of these new processes often rely on numerical simulations. The accuracy of these simulations, however, requires accurate input data for a wide temperature range. Numerous studies have been performed, and most of the needed parameters are generally available in the literature, but unfortunately, some discrepancies are observed in terms of measured data regarding fracture mechanics parameters. The aim of this article is to gather all these data and discuss the validity of these properties between room temperature and 1273 K. Particular attention is given to silicon fracture properties depending on crystallographic orientations, and to the brittle–ductile temperature transition which can strongly affect the quality of silicon layers.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-012-6713-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6677-2850</orcidid><orcidid>https://orcid.org/0000-0002-1400-5799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2013-02, Vol.48 (3), p.979-988
issn 0022-2461
1573-4803
language eng
recordid cdi_hal_primary_oai_HAL_hal_00720597v1
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Computer simulation
Crystallography
Crystallography and Scattering Methods
Domains
Ductile fracture
Ductile-brittle transition
Engineering Sciences
Evolution
Fracture mechanics
Materials
Materials Science
Mathematical models
Mechanical properties
Microelectromechanical systems
Parameters
Polymer Sciences
Properties (attributes)
Review
Semiconductors
Silicon
Single crystals
Solid Mechanics
Thermomechanical properties
Thermomechanical treatment
Thin films
Toy industry
title Thermo-mechanical and fracture properties in single-crystal silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20and%20fracture%20properties%20in%20single-crystal%20silicon&rft.jtitle=Journal%20of%20materials%20science&rft.au=Masolin,%20Alex&rft.date=2013-02-01&rft.volume=48&rft.issue=3&rft.spage=979&rft.epage=988&rft.pages=979-988&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-012-6713-7&rft_dat=%3Cgale_hal_p%3EA334042237%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259741996&rft_id=info:pmid/&rft_galeid=A334042237&rfr_iscdi=true