Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities

A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2012-01, Vol.18 (5), p.1419-1431
Hauptverfasser: Bonnet, Célia S., Buron, Frédéric, Caillé, Fabien, Shade, Chad M., Drahoš, Bohuslav, Pellegatti, Laurent, Zhang, Jian, Villette, Sandrine, Helm, Lothar, Pichon, Chantal, Suzenet, Franck, Petoud, Stéphane, Tóth, Éva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1431
container_issue 5
container_start_page 1419
container_title Chemistry : a European journal
container_volume 18
creator Bonnet, Célia S.
Buron, Frédéric
Caillé, Fabien
Shade, Chad M.
Drahoš, Bohuslav
Pellegatti, Laurent
Zhang, Jian
Villette, Sandrine
Helm, Lothar
Pichon, Chantal
Suzenet, Franck
Petoud, Stéphane
Tóth, Éva
description A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively. Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes.
doi_str_mv 10.1002/chem.201102310
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00720541v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957872261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</originalsourceid><addsrcrecordid>eNqFkE1P20AQhleoFQTaa4_IUk8cnM5-e48hgiSqoS2i6nG1WY_JQmwHr0PJv68j06i3nmY0et5Ho5eQTxTGFIB98SusxgwoBcYpHJERlYymXCv5jozACJ0qyc0JOY3xEQCM4vyYnDDGKKeZHpEf33dtKEKN6aWLWCS5q7uVq0OBybSpNmt8xbjflqEO9UNyc7dIXF0kt4u7JN9WfS56rD0mE9-Fl9AFjB_I-9KtI358m2fk5_XV_XSe5t9mi-kkT73sP09Lobx26GnJZEZBGpMtM1Q8U5K6ZamM9oUpS-MEAhRKODBSlEqgyjhzQvMzcjF4V25tN22oXLuzjQt2Psnt_gagGUhBX2jPfh7YTds8bzF29rHZtnX_nqVaKW0UcNFT44HybRNji-VBS8Hu27b7tu2h7T5w_qbdLissDvjfenvADMDvsMbdf3R2Or-6-VeeDtkQO3w9ZF37ZJXmWtpftzN7r68Fm32V1vA_3yGXxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766796034</pqid></control><display><type>article</type><title>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bonnet, Célia S. ; Buron, Frédéric ; Caillé, Fabien ; Shade, Chad M. ; Drahoš, Bohuslav ; Pellegatti, Laurent ; Zhang, Jian ; Villette, Sandrine ; Helm, Lothar ; Pichon, Chantal ; Suzenet, Franck ; Petoud, Stéphane ; Tóth, Éva</creator><creatorcontrib>Bonnet, Célia S. ; Buron, Frédéric ; Caillé, Fabien ; Shade, Chad M. ; Drahoš, Bohuslav ; Pellegatti, Laurent ; Zhang, Jian ; Villette, Sandrine ; Helm, Lothar ; Pichon, Chantal ; Suzenet, Franck ; Petoud, Stéphane ; Tóth, Éva</creatorcontrib><description>A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively. Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201102310</identifier><identifier>PMID: 22213187</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amidinotransferases ; Animals ; bimodal ; Biochemistry, Molecular Biology ; Chemistry ; HeLa Cells ; Humans ; lanthanides ; Lanthanoid Series Elements ; Lanthanoid Series Elements - chemistry ; Life Sciences ; Ligands ; Liver ; Liver - enzymology ; Luminescence ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging - methods ; Mice ; Models, Chemical ; Molecular Structure ; near infrared ; NMR ; Nuclear magnetic resonance ; Organometallic Compounds ; Organometallic Compounds - chemistry ; Pyridines ; Pyridines - chemistry ; Spectroscopy, Near-Infrared ; Spectroscopy, Near-Infrared - methods ; Temperature ; Triazoles ; Triazoles - chemistry</subject><ispartof>Chemistry : a European journal, 2012-01, Vol.18 (5), p.1419-1431</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</citedby><cites>FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</cites><orcidid>0000-0002-3200-6752 ; 0000-0001-5773-1515 ; 0000-0003-3161-3937 ; 0000-0003-0228-8098 ; 0000-0003-0088-7337 ; 0000-0003-1394-1603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201102310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201102310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22213187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00720541$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnet, Célia S.</creatorcontrib><creatorcontrib>Buron, Frédéric</creatorcontrib><creatorcontrib>Caillé, Fabien</creatorcontrib><creatorcontrib>Shade, Chad M.</creatorcontrib><creatorcontrib>Drahoš, Bohuslav</creatorcontrib><creatorcontrib>Pellegatti, Laurent</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Villette, Sandrine</creatorcontrib><creatorcontrib>Helm, Lothar</creatorcontrib><creatorcontrib>Pichon, Chantal</creatorcontrib><creatorcontrib>Suzenet, Franck</creatorcontrib><creatorcontrib>Petoud, Stéphane</creatorcontrib><creatorcontrib>Tóth, Éva</creatorcontrib><title>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively. Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes.</description><subject>Amidinotransferases</subject><subject>Animals</subject><subject>bimodal</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chemistry</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>lanthanides</subject><subject>Lanthanoid Series Elements</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Liver</subject><subject>Liver - enzymology</subject><subject>Luminescence</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>near infrared</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organometallic Compounds</subject><subject>Organometallic Compounds - chemistry</subject><subject>Pyridines</subject><subject>Pyridines - chemistry</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Temperature</subject><subject>Triazoles</subject><subject>Triazoles - chemistry</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P20AQhleoFQTaa4_IUk8cnM5-e48hgiSqoS2i6nG1WY_JQmwHr0PJv68j06i3nmY0et5Ho5eQTxTGFIB98SusxgwoBcYpHJERlYymXCv5jozACJ0qyc0JOY3xEQCM4vyYnDDGKKeZHpEf33dtKEKN6aWLWCS5q7uVq0OBybSpNmt8xbjflqEO9UNyc7dIXF0kt4u7JN9WfS56rD0mE9-Fl9AFjB_I-9KtI358m2fk5_XV_XSe5t9mi-kkT73sP09Lobx26GnJZEZBGpMtM1Q8U5K6ZamM9oUpS-MEAhRKODBSlEqgyjhzQvMzcjF4V25tN22oXLuzjQt2Psnt_gagGUhBX2jPfh7YTds8bzF29rHZtnX_nqVaKW0UcNFT44HybRNji-VBS8Hu27b7tu2h7T5w_qbdLissDvjfenvADMDvsMbdf3R2Or-6-VeeDtkQO3w9ZF37ZJXmWtpftzN7r68Fm32V1vA_3yGXxg</recordid><startdate>20120127</startdate><enddate>20120127</enddate><creator>Bonnet, Célia S.</creator><creator>Buron, Frédéric</creator><creator>Caillé, Fabien</creator><creator>Shade, Chad M.</creator><creator>Drahoš, Bohuslav</creator><creator>Pellegatti, Laurent</creator><creator>Zhang, Jian</creator><creator>Villette, Sandrine</creator><creator>Helm, Lothar</creator><creator>Pichon, Chantal</creator><creator>Suzenet, Franck</creator><creator>Petoud, Stéphane</creator><creator>Tóth, Éva</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3200-6752</orcidid><orcidid>https://orcid.org/0000-0001-5773-1515</orcidid><orcidid>https://orcid.org/0000-0003-3161-3937</orcidid><orcidid>https://orcid.org/0000-0003-0228-8098</orcidid><orcidid>https://orcid.org/0000-0003-0088-7337</orcidid><orcidid>https://orcid.org/0000-0003-1394-1603</orcidid></search><sort><creationdate>20120127</creationdate><title>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</title><author>Bonnet, Célia S. ; Buron, Frédéric ; Caillé, Fabien ; Shade, Chad M. ; Drahoš, Bohuslav ; Pellegatti, Laurent ; Zhang, Jian ; Villette, Sandrine ; Helm, Lothar ; Pichon, Chantal ; Suzenet, Franck ; Petoud, Stéphane ; Tóth, Éva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amidinotransferases</topic><topic>Animals</topic><topic>bimodal</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chemistry</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>lanthanides</topic><topic>Lanthanoid Series Elements</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Liver</topic><topic>Liver - enzymology</topic><topic>Luminescence</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>near infrared</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organometallic Compounds</topic><topic>Organometallic Compounds - chemistry</topic><topic>Pyridines</topic><topic>Pyridines - chemistry</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Temperature</topic><topic>Triazoles</topic><topic>Triazoles - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnet, Célia S.</creatorcontrib><creatorcontrib>Buron, Frédéric</creatorcontrib><creatorcontrib>Caillé, Fabien</creatorcontrib><creatorcontrib>Shade, Chad M.</creatorcontrib><creatorcontrib>Drahoš, Bohuslav</creatorcontrib><creatorcontrib>Pellegatti, Laurent</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Villette, Sandrine</creatorcontrib><creatorcontrib>Helm, Lothar</creatorcontrib><creatorcontrib>Pichon, Chantal</creatorcontrib><creatorcontrib>Suzenet, Franck</creatorcontrib><creatorcontrib>Petoud, Stéphane</creatorcontrib><creatorcontrib>Tóth, Éva</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnet, Célia S.</au><au>Buron, Frédéric</au><au>Caillé, Fabien</au><au>Shade, Chad M.</au><au>Drahoš, Bohuslav</au><au>Pellegatti, Laurent</au><au>Zhang, Jian</au><au>Villette, Sandrine</au><au>Helm, Lothar</au><au>Pichon, Chantal</au><au>Suzenet, Franck</au><au>Petoud, Stéphane</au><au>Tóth, Éva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2012-01-27</date><risdate>2012</risdate><volume>18</volume><issue>5</issue><spage>1419</spage><epage>1431</epage><pages>1419-1431</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively. Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22213187</pmid><doi>10.1002/chem.201102310</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3200-6752</orcidid><orcidid>https://orcid.org/0000-0001-5773-1515</orcidid><orcidid>https://orcid.org/0000-0003-3161-3937</orcidid><orcidid>https://orcid.org/0000-0003-0228-8098</orcidid><orcidid>https://orcid.org/0000-0003-0088-7337</orcidid><orcidid>https://orcid.org/0000-0003-1394-1603</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2012-01, Vol.18 (5), p.1419-1431
issn 0947-6539
1521-3765
language eng
recordid cdi_hal_primary_oai_HAL_hal_00720541v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amidinotransferases
Animals
bimodal
Biochemistry, Molecular Biology
Chemistry
HeLa Cells
Humans
lanthanides
Lanthanoid Series Elements
Lanthanoid Series Elements - chemistry
Life Sciences
Ligands
Liver
Liver - enzymology
Luminescence
Magnetic Resonance Imaging
Magnetic Resonance Imaging - methods
Mice
Models, Chemical
Molecular Structure
near infrared
NMR
Nuclear magnetic resonance
Organometallic Compounds
Organometallic Compounds - chemistry
Pyridines
Pyridines - chemistry
Spectroscopy, Near-Infrared
Spectroscopy, Near-Infrared - methods
Temperature
Triazoles
Triazoles - chemistry
title Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyridine-Based%20Lanthanide%20Complexes%20Combining%20MRI%20and%20NIR%20Luminescence%20Activities&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Bonnet,%20C%C3%A9lia%20S.&rft.date=2012-01-27&rft.volume=18&rft.issue=5&rft.spage=1419&rft.epage=1431&rft.pages=1419-1431&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201102310&rft_dat=%3Cproquest_hal_p%3E3957872261%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766796034&rft_id=info:pmid/22213187&rfr_iscdi=true