Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities
A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2012-01, Vol.18 (5), p.1419-1431 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1431 |
---|---|
container_issue | 5 |
container_start_page | 1419 |
container_title | Chemistry : a European journal |
container_volume | 18 |
creator | Bonnet, Célia S. Buron, Frédéric Caillé, Fabien Shade, Chad M. Drahoš, Bohuslav Pellegatti, Laurent Zhang, Jian Villette, Sandrine Helm, Lothar Pichon, Chantal Suzenet, Franck Petoud, Stéphane Tóth, Éva |
description | A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively.
Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes. |
doi_str_mv | 10.1002/chem.201102310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00720541v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957872261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</originalsourceid><addsrcrecordid>eNqFkE1P20AQhleoFQTaa4_IUk8cnM5-e48hgiSqoS2i6nG1WY_JQmwHr0PJv68j06i3nmY0et5Ho5eQTxTGFIB98SusxgwoBcYpHJERlYymXCv5jozACJ0qyc0JOY3xEQCM4vyYnDDGKKeZHpEf33dtKEKN6aWLWCS5q7uVq0OBybSpNmt8xbjflqEO9UNyc7dIXF0kt4u7JN9WfS56rD0mE9-Fl9AFjB_I-9KtI358m2fk5_XV_XSe5t9mi-kkT73sP09Lobx26GnJZEZBGpMtM1Q8U5K6ZamM9oUpS-MEAhRKODBSlEqgyjhzQvMzcjF4V25tN22oXLuzjQt2Psnt_gagGUhBX2jPfh7YTds8bzF29rHZtnX_nqVaKW0UcNFT44HybRNji-VBS8Hu27b7tu2h7T5w_qbdLissDvjfenvADMDvsMbdf3R2Or-6-VeeDtkQO3w9ZF37ZJXmWtpftzN7r68Fm32V1vA_3yGXxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766796034</pqid></control><display><type>article</type><title>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bonnet, Célia S. ; Buron, Frédéric ; Caillé, Fabien ; Shade, Chad M. ; Drahoš, Bohuslav ; Pellegatti, Laurent ; Zhang, Jian ; Villette, Sandrine ; Helm, Lothar ; Pichon, Chantal ; Suzenet, Franck ; Petoud, Stéphane ; Tóth, Éva</creator><creatorcontrib>Bonnet, Célia S. ; Buron, Frédéric ; Caillé, Fabien ; Shade, Chad M. ; Drahoš, Bohuslav ; Pellegatti, Laurent ; Zhang, Jian ; Villette, Sandrine ; Helm, Lothar ; Pichon, Chantal ; Suzenet, Franck ; Petoud, Stéphane ; Tóth, Éva</creatorcontrib><description>A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively.
Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201102310</identifier><identifier>PMID: 22213187</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amidinotransferases ; Animals ; bimodal ; Biochemistry, Molecular Biology ; Chemistry ; HeLa Cells ; Humans ; lanthanides ; Lanthanoid Series Elements ; Lanthanoid Series Elements - chemistry ; Life Sciences ; Ligands ; Liver ; Liver - enzymology ; Luminescence ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging - methods ; Mice ; Models, Chemical ; Molecular Structure ; near infrared ; NMR ; Nuclear magnetic resonance ; Organometallic Compounds ; Organometallic Compounds - chemistry ; Pyridines ; Pyridines - chemistry ; Spectroscopy, Near-Infrared ; Spectroscopy, Near-Infrared - methods ; Temperature ; Triazoles ; Triazoles - chemistry</subject><ispartof>Chemistry : a European journal, 2012-01, Vol.18 (5), p.1419-1431</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</citedby><cites>FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</cites><orcidid>0000-0002-3200-6752 ; 0000-0001-5773-1515 ; 0000-0003-3161-3937 ; 0000-0003-0228-8098 ; 0000-0003-0088-7337 ; 0000-0003-1394-1603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201102310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201102310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22213187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00720541$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnet, Célia S.</creatorcontrib><creatorcontrib>Buron, Frédéric</creatorcontrib><creatorcontrib>Caillé, Fabien</creatorcontrib><creatorcontrib>Shade, Chad M.</creatorcontrib><creatorcontrib>Drahoš, Bohuslav</creatorcontrib><creatorcontrib>Pellegatti, Laurent</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Villette, Sandrine</creatorcontrib><creatorcontrib>Helm, Lothar</creatorcontrib><creatorcontrib>Pichon, Chantal</creatorcontrib><creatorcontrib>Suzenet, Franck</creatorcontrib><creatorcontrib>Petoud, Stéphane</creatorcontrib><creatorcontrib>Tóth, Éva</creatorcontrib><title>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively.
Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes.</description><subject>Amidinotransferases</subject><subject>Animals</subject><subject>bimodal</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chemistry</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>lanthanides</subject><subject>Lanthanoid Series Elements</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Liver</subject><subject>Liver - enzymology</subject><subject>Luminescence</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>near infrared</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organometallic Compounds</subject><subject>Organometallic Compounds - chemistry</subject><subject>Pyridines</subject><subject>Pyridines - chemistry</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Temperature</subject><subject>Triazoles</subject><subject>Triazoles - chemistry</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P20AQhleoFQTaa4_IUk8cnM5-e48hgiSqoS2i6nG1WY_JQmwHr0PJv68j06i3nmY0et5Ho5eQTxTGFIB98SusxgwoBcYpHJERlYymXCv5jozACJ0qyc0JOY3xEQCM4vyYnDDGKKeZHpEf33dtKEKN6aWLWCS5q7uVq0OBybSpNmt8xbjflqEO9UNyc7dIXF0kt4u7JN9WfS56rD0mE9-Fl9AFjB_I-9KtI358m2fk5_XV_XSe5t9mi-kkT73sP09Lobx26GnJZEZBGpMtM1Q8U5K6ZamM9oUpS-MEAhRKODBSlEqgyjhzQvMzcjF4V25tN22oXLuzjQt2Psnt_gagGUhBX2jPfh7YTds8bzF29rHZtnX_nqVaKW0UcNFT44HybRNji-VBS8Hu27b7tu2h7T5w_qbdLissDvjfenvADMDvsMbdf3R2Or-6-VeeDtkQO3w9ZF37ZJXmWtpftzN7r68Fm32V1vA_3yGXxg</recordid><startdate>20120127</startdate><enddate>20120127</enddate><creator>Bonnet, Célia S.</creator><creator>Buron, Frédéric</creator><creator>Caillé, Fabien</creator><creator>Shade, Chad M.</creator><creator>Drahoš, Bohuslav</creator><creator>Pellegatti, Laurent</creator><creator>Zhang, Jian</creator><creator>Villette, Sandrine</creator><creator>Helm, Lothar</creator><creator>Pichon, Chantal</creator><creator>Suzenet, Franck</creator><creator>Petoud, Stéphane</creator><creator>Tóth, Éva</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3200-6752</orcidid><orcidid>https://orcid.org/0000-0001-5773-1515</orcidid><orcidid>https://orcid.org/0000-0003-3161-3937</orcidid><orcidid>https://orcid.org/0000-0003-0228-8098</orcidid><orcidid>https://orcid.org/0000-0003-0088-7337</orcidid><orcidid>https://orcid.org/0000-0003-1394-1603</orcidid></search><sort><creationdate>20120127</creationdate><title>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</title><author>Bonnet, Célia S. ; Buron, Frédéric ; Caillé, Fabien ; Shade, Chad M. ; Drahoš, Bohuslav ; Pellegatti, Laurent ; Zhang, Jian ; Villette, Sandrine ; Helm, Lothar ; Pichon, Chantal ; Suzenet, Franck ; Petoud, Stéphane ; Tóth, Éva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5100-f46c7aec1f258105998b8e638651abf697cd9ff9a4e00d64a0954f64e6832a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amidinotransferases</topic><topic>Animals</topic><topic>bimodal</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chemistry</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>lanthanides</topic><topic>Lanthanoid Series Elements</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Liver</topic><topic>Liver - enzymology</topic><topic>Luminescence</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>near infrared</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organometallic Compounds</topic><topic>Organometallic Compounds - chemistry</topic><topic>Pyridines</topic><topic>Pyridines - chemistry</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Temperature</topic><topic>Triazoles</topic><topic>Triazoles - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnet, Célia S.</creatorcontrib><creatorcontrib>Buron, Frédéric</creatorcontrib><creatorcontrib>Caillé, Fabien</creatorcontrib><creatorcontrib>Shade, Chad M.</creatorcontrib><creatorcontrib>Drahoš, Bohuslav</creatorcontrib><creatorcontrib>Pellegatti, Laurent</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Villette, Sandrine</creatorcontrib><creatorcontrib>Helm, Lothar</creatorcontrib><creatorcontrib>Pichon, Chantal</creatorcontrib><creatorcontrib>Suzenet, Franck</creatorcontrib><creatorcontrib>Petoud, Stéphane</creatorcontrib><creatorcontrib>Tóth, Éva</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnet, Célia S.</au><au>Buron, Frédéric</au><au>Caillé, Fabien</au><au>Shade, Chad M.</au><au>Drahoš, Bohuslav</au><au>Pellegatti, Laurent</au><au>Zhang, Jian</au><au>Villette, Sandrine</au><au>Helm, Lothar</au><au>Pichon, Chantal</au><au>Suzenet, Franck</au><au>Petoud, Stéphane</au><au>Tóth, Éva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2012-01-27</date><risdate>2012</risdate><volume>18</volume><issue>5</issue><spage>1419</spage><epage>1431</epage><pages>1419-1431</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>A series of novel triazole derivative pyridine‐based polyamino–polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd3+ and near‐infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln3+ complexes, as assessed by pH potentiometric measurements, are in the range log KLnL=17–19, with a high selectivity for lanthanides over Ca2+, Cu2+, and Zn2+. The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd3+ chelates. The water exchange of the Gd3+ complexes (kex298=7.7–9.3×106 s−1) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV≠=7.2–8.8 cm3 mol−1). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl–triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet‐state energies associated with good quantum yields for both Nd3+ and Yb3+ complexes. Cellular and in vivo toxicity studies in mice evidenced the non‐toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd3+ and the luminescent lanthanide complexes, respectively.
Bimodal application: Pyridine‐based polyamino–polycarboxylate ligands (see figure) ensure non‐toxicity as well as advantageous magnetic and luminescence properties for the corresponding Gd3+ and near‐infrared‐emitting lanthanide complexes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22213187</pmid><doi>10.1002/chem.201102310</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3200-6752</orcidid><orcidid>https://orcid.org/0000-0001-5773-1515</orcidid><orcidid>https://orcid.org/0000-0003-3161-3937</orcidid><orcidid>https://orcid.org/0000-0003-0228-8098</orcidid><orcidid>https://orcid.org/0000-0003-0088-7337</orcidid><orcidid>https://orcid.org/0000-0003-1394-1603</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2012-01, Vol.18 (5), p.1419-1431 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00720541v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amidinotransferases Animals bimodal Biochemistry, Molecular Biology Chemistry HeLa Cells Humans lanthanides Lanthanoid Series Elements Lanthanoid Series Elements - chemistry Life Sciences Ligands Liver Liver - enzymology Luminescence Magnetic Resonance Imaging Magnetic Resonance Imaging - methods Mice Models, Chemical Molecular Structure near infrared NMR Nuclear magnetic resonance Organometallic Compounds Organometallic Compounds - chemistry Pyridines Pyridines - chemistry Spectroscopy, Near-Infrared Spectroscopy, Near-Infrared - methods Temperature Triazoles Triazoles - chemistry |
title | Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyridine-Based%20Lanthanide%20Complexes%20Combining%20MRI%20and%20NIR%20Luminescence%20Activities&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Bonnet,%20C%C3%A9lia%20S.&rft.date=2012-01-27&rft.volume=18&rft.issue=5&rft.spage=1419&rft.epage=1431&rft.pages=1419-1431&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201102310&rft_dat=%3Cproquest_hal_p%3E3957872261%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766796034&rft_id=info:pmid/22213187&rfr_iscdi=true |