Two stable methods with numerical experiments for solving the backward heat equation

This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2011-02, Vol.61 (2), p.266-284
Hauptverfasser: Ternat, Fabien, Orellana, Oscar, Daripa, Prabir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 2
container_start_page 266
container_title Applied numerical mathematics
container_volume 61
creator Ternat, Fabien
Orellana, Oscar
Daripa, Prabir
description This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time. Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified.
doi_str_mv 10.1016/j.apnum.2010.09.006
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00717387v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927410001790</els_id><sourcerecordid>oai_HAL_hal_00717387v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</originalsourceid><addsrcrecordid>eNp9kDtPKzEQRi0EEuHxC2jcUFBs7ni9fmxBgRCQK0W6TagtxzvLOmx2g20S7r_HIYiSaqzROTPjj5ArBlMGTP5ZTe1meF9PS8gdqKcA8ohMmFa8EJWEYzLJlC7qUlWn5CzGFQAIUcGELBa7kcZklz3SNaZubCLd-dTRPA6Dd7an-LHJrzUOKdJ2DDSO_dYPLzR1SJfWve5saGiHNlF8e7fJj8MFOWltH_Hyu56T58eHxf2smP97-nt_Ny8clyoVqqrqJbCaOxBSlla42rWVFkuuKi0boZVFJVDxyknp2hJ5o1vXSiw11loofk5uDnM725tNvtGG_2a03szu5mbfA1BMca22LLP8wLowxhiw_REYmH2IZmW-QjT7EA3UWZbZuj5YGxtzFm2wg_PxRy25lFowyNztgcP83a3HYKLzODhsfECXTDP6X_d8AlLziOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two stable methods with numerical experiments for solving the backward heat equation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ternat, Fabien ; Orellana, Oscar ; Daripa, Prabir</creator><creatorcontrib>Ternat, Fabien ; Orellana, Oscar ; Daripa, Prabir</creatorcontrib><description>This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time. Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2010.09.006</identifier><identifier>CODEN: ANMAEL</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Backward heat equation ; Crank–Nicolson method ; Dispersion relation ; Euler scheme ; Exact sciences and technology ; Filtering ; Ill-posed problem ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Numerical methods ; Numerical methods in probability and statistics ; Partial differential equations ; Regularization ; Sciences and techniques of general use ; Sequences, series, summability</subject><ispartof>Applied numerical mathematics, 2011-02, Vol.61 (2), p.266-284</ispartof><rights>2010 IMACS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</citedby><cites>FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apnum.2010.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23668510$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00717387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ternat, Fabien</creatorcontrib><creatorcontrib>Orellana, Oscar</creatorcontrib><creatorcontrib>Daripa, Prabir</creatorcontrib><title>Two stable methods with numerical experiments for solving the backward heat equation</title><title>Applied numerical mathematics</title><description>This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time. Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified.</description><subject>Backward heat equation</subject><subject>Crank–Nicolson method</subject><subject>Dispersion relation</subject><subject>Euler scheme</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Ill-posed problem</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Numerical methods</subject><subject>Numerical methods in probability and statistics</subject><subject>Partial differential equations</subject><subject>Regularization</subject><subject>Sciences and techniques of general use</subject><subject>Sequences, series, summability</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPKzEQRi0EEuHxC2jcUFBs7ni9fmxBgRCQK0W6TagtxzvLOmx2g20S7r_HIYiSaqzROTPjj5ArBlMGTP5ZTe1meF9PS8gdqKcA8ohMmFa8EJWEYzLJlC7qUlWn5CzGFQAIUcGELBa7kcZklz3SNaZubCLd-dTRPA6Dd7an-LHJrzUOKdJ2DDSO_dYPLzR1SJfWve5saGiHNlF8e7fJj8MFOWltH_Hyu56T58eHxf2smP97-nt_Ny8clyoVqqrqJbCaOxBSlla42rWVFkuuKi0boZVFJVDxyknp2hJ5o1vXSiw11loofk5uDnM725tNvtGG_2a03szu5mbfA1BMca22LLP8wLowxhiw_REYmH2IZmW-QjT7EA3UWZbZuj5YGxtzFm2wg_PxRy25lFowyNztgcP83a3HYKLzODhsfECXTDP6X_d8AlLziOA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Ternat, Fabien</creator><creator>Orellana, Oscar</creator><creator>Daripa, Prabir</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20110201</creationdate><title>Two stable methods with numerical experiments for solving the backward heat equation</title><author>Ternat, Fabien ; Orellana, Oscar ; Daripa, Prabir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Backward heat equation</topic><topic>Crank–Nicolson method</topic><topic>Dispersion relation</topic><topic>Euler scheme</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Ill-posed problem</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Numerical methods</topic><topic>Numerical methods in probability and statistics</topic><topic>Partial differential equations</topic><topic>Regularization</topic><topic>Sciences and techniques of general use</topic><topic>Sequences, series, summability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ternat, Fabien</creatorcontrib><creatorcontrib>Orellana, Oscar</creatorcontrib><creatorcontrib>Daripa, Prabir</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ternat, Fabien</au><au>Orellana, Oscar</au><au>Daripa, Prabir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two stable methods with numerical experiments for solving the backward heat equation</atitle><jtitle>Applied numerical mathematics</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>61</volume><issue>2</issue><spage>266</spage><epage>284</epage><pages>266-284</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><coden>ANMAEL</coden><abstract>This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time. Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2010.09.006</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 2011-02, Vol.61 (2), p.266-284
issn 0168-9274
1873-5460
language eng
recordid cdi_hal_primary_oai_HAL_hal_00717387v1
source Access via ScienceDirect (Elsevier)
subjects Backward heat equation
Crank–Nicolson method
Dispersion relation
Euler scheme
Exact sciences and technology
Filtering
Ill-posed problem
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Numerical methods
Numerical methods in probability and statistics
Partial differential equations
Regularization
Sciences and techniques of general use
Sequences, series, summability
title Two stable methods with numerical experiments for solving the backward heat equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20stable%20methods%20with%20numerical%20experiments%20for%20solving%20the%20backward%20heat%20equation&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Ternat,%20Fabien&rft.date=2011-02-01&rft.volume=61&rft.issue=2&rft.spage=266&rft.epage=284&rft.pages=266-284&rft.issn=0168-9274&rft.eissn=1873-5460&rft.coden=ANMAEL&rft_id=info:doi/10.1016/j.apnum.2010.09.006&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00717387v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168927410001790&rfr_iscdi=true