Two stable methods with numerical experiments for solving the backward heat equation
This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely E...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 2011-02, Vol.61 (2), p.266-284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 2 |
container_start_page | 266 |
container_title | Applied numerical mathematics |
container_volume | 61 |
creator | Ternat, Fabien Orellana, Oscar Daripa, Prabir |
description | This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time.
Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified. |
doi_str_mv | 10.1016/j.apnum.2010.09.006 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00717387v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927410001790</els_id><sourcerecordid>oai_HAL_hal_00717387v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</originalsourceid><addsrcrecordid>eNp9kDtPKzEQRi0EEuHxC2jcUFBs7ni9fmxBgRCQK0W6TagtxzvLOmx2g20S7r_HIYiSaqzROTPjj5ArBlMGTP5ZTe1meF9PS8gdqKcA8ohMmFa8EJWEYzLJlC7qUlWn5CzGFQAIUcGELBa7kcZklz3SNaZubCLd-dTRPA6Dd7an-LHJrzUOKdJ2DDSO_dYPLzR1SJfWve5saGiHNlF8e7fJj8MFOWltH_Hyu56T58eHxf2smP97-nt_Ny8clyoVqqrqJbCaOxBSlla42rWVFkuuKi0boZVFJVDxyknp2hJ5o1vXSiw11loofk5uDnM725tNvtGG_2a03szu5mbfA1BMca22LLP8wLowxhiw_REYmH2IZmW-QjT7EA3UWZbZuj5YGxtzFm2wg_PxRy25lFowyNztgcP83a3HYKLzODhsfECXTDP6X_d8AlLziOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two stable methods with numerical experiments for solving the backward heat equation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ternat, Fabien ; Orellana, Oscar ; Daripa, Prabir</creator><creatorcontrib>Ternat, Fabien ; Orellana, Oscar ; Daripa, Prabir</creatorcontrib><description>This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time.
Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2010.09.006</identifier><identifier>CODEN: ANMAEL</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Backward heat equation ; Crank–Nicolson method ; Dispersion relation ; Euler scheme ; Exact sciences and technology ; Filtering ; Ill-posed problem ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Numerical methods ; Numerical methods in probability and statistics ; Partial differential equations ; Regularization ; Sciences and techniques of general use ; Sequences, series, summability</subject><ispartof>Applied numerical mathematics, 2011-02, Vol.61 (2), p.266-284</ispartof><rights>2010 IMACS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</citedby><cites>FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apnum.2010.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23668510$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00717387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ternat, Fabien</creatorcontrib><creatorcontrib>Orellana, Oscar</creatorcontrib><creatorcontrib>Daripa, Prabir</creatorcontrib><title>Two stable methods with numerical experiments for solving the backward heat equation</title><title>Applied numerical mathematics</title><description>This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time.
Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified.</description><subject>Backward heat equation</subject><subject>Crank–Nicolson method</subject><subject>Dispersion relation</subject><subject>Euler scheme</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Ill-posed problem</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Numerical methods</subject><subject>Numerical methods in probability and statistics</subject><subject>Partial differential equations</subject><subject>Regularization</subject><subject>Sciences and techniques of general use</subject><subject>Sequences, series, summability</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPKzEQRi0EEuHxC2jcUFBs7ni9fmxBgRCQK0W6TagtxzvLOmx2g20S7r_HIYiSaqzROTPjj5ArBlMGTP5ZTe1meF9PS8gdqKcA8ohMmFa8EJWEYzLJlC7qUlWn5CzGFQAIUcGELBa7kcZklz3SNaZubCLd-dTRPA6Dd7an-LHJrzUOKdJ2DDSO_dYPLzR1SJfWve5saGiHNlF8e7fJj8MFOWltH_Hyu56T58eHxf2smP97-nt_Ny8clyoVqqrqJbCaOxBSlla42rWVFkuuKi0boZVFJVDxyknp2hJ5o1vXSiw11loofk5uDnM725tNvtGG_2a03szu5mbfA1BMca22LLP8wLowxhiw_REYmH2IZmW-QjT7EA3UWZbZuj5YGxtzFm2wg_PxRy25lFowyNztgcP83a3HYKLzODhsfECXTDP6X_d8AlLziOA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Ternat, Fabien</creator><creator>Orellana, Oscar</creator><creator>Daripa, Prabir</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20110201</creationdate><title>Two stable methods with numerical experiments for solving the backward heat equation</title><author>Ternat, Fabien ; Orellana, Oscar ; Daripa, Prabir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-7449b0193c05662a5c9cf485b37486d587ae75e734c66cf2e3d8fcf6e28e98573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Backward heat equation</topic><topic>Crank–Nicolson method</topic><topic>Dispersion relation</topic><topic>Euler scheme</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Ill-posed problem</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Numerical methods</topic><topic>Numerical methods in probability and statistics</topic><topic>Partial differential equations</topic><topic>Regularization</topic><topic>Sciences and techniques of general use</topic><topic>Sequences, series, summability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ternat, Fabien</creatorcontrib><creatorcontrib>Orellana, Oscar</creatorcontrib><creatorcontrib>Daripa, Prabir</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ternat, Fabien</au><au>Orellana, Oscar</au><au>Daripa, Prabir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two stable methods with numerical experiments for solving the backward heat equation</atitle><jtitle>Applied numerical mathematics</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>61</volume><issue>2</issue><spage>266</spage><epage>284</epage><pages>266-284</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><coden>ANMAEL</coden><abstract>This paper presents results of some numerical experiments on the backward heat equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation, to regularize the ill-posed backward heat equation have been used. In each of these techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been used to advance the solution in time.
Crank–Nicolson method is very counter-intuitive for solving the backward heat equation because the dispersion relation of the scheme for the backward heat equation has a singularity (unbounded growth) for a particular wave whose finite wave number depends on the numerical parameters. In comparison, the Euler method shows only catastrophic growth of relatively much shorter waves. Strikingly we find that use of smart filtering techniques with the CN method can give as good a result, if not better, as with the Euler method which is discussed in the main text. Performance of these regularization methods using these numerical schemes have been exemplified.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2010.09.006</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 2011-02, Vol.61 (2), p.266-284 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00717387v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Backward heat equation Crank–Nicolson method Dispersion relation Euler scheme Exact sciences and technology Filtering Ill-posed problem Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Numerical methods Numerical methods in probability and statistics Partial differential equations Regularization Sciences and techniques of general use Sequences, series, summability |
title | Two stable methods with numerical experiments for solving the backward heat equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20stable%20methods%20with%20numerical%20experiments%20for%20solving%20the%20backward%20heat%20equation&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Ternat,%20Fabien&rft.date=2011-02-01&rft.volume=61&rft.issue=2&rft.spage=266&rft.epage=284&rft.pages=266-284&rft.issn=0168-9274&rft.eissn=1873-5460&rft.coden=ANMAEL&rft_id=info:doi/10.1016/j.apnum.2010.09.006&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00717387v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168927410001790&rfr_iscdi=true |