Scalable structural break detection
[Display omitted] ► The context of the paper is the analysis of large volume of non-stationary data. ► We fit a piecewise AR model to the analysed time series using the MDL principle. ► The existing method AutoPARM scales inefficiently with the data volume. ► We propose an alternative optimisation s...
Gespeichert in:
Veröffentlicht in: | Applied soft computing 2012-11, Vol.12 (11), p.3408-3420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3420 |
---|---|
container_issue | 11 |
container_start_page | 3408 |
container_title | Applied soft computing |
container_volume | 12 |
creator | Éltetö, T. Hansen, N. Germain-Renaud, C. Bondon, P. |
description | [Display omitted]
► The context of the paper is the analysis of large volume of non-stationary data. ► We fit a piecewise AR model to the analysed time series using the MDL principle. ► The existing method AutoPARM scales inefficiently with the data volume. ► We propose an alternative optimisation strategy using CMA-ES for the fitting. ► Our method achieves at least one order of magnitude performance improvement.
This paper deals with a statistical model fitting procedure for non-stationary time series. This procedure selects the parameters of a piecewise autoregressive model using the Minimum Description Length principle. The existing chromosome representation of the piecewise autoregressive model and its corresponding optimisation algorithm are improved. First, we show that our proposed chromosome representation better captures the intrinsic properties of the piecewise autoregressive model. Second, we apply an optimisation algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), with which our setup converges faster to the optimal fit. Our proposed method achieves at least one order of magnitude performance improvement compared to the existing solution. |
doi_str_mv | 10.1016/j.asoc.2012.06.002 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00711843v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568494612002694</els_id><sourcerecordid>S1568494612002694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4a28e6304422de176a53271a43c4c586b80b58fc3ef7225cd9ad39565240edca3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeCJw-Js5_ZgJdS_IKCB_W8THYnuDU2spsW_PcmVDx6mmF4n4H3YeySQ8mBm5tNibn3pQAuSjAlgDhiM24rUdTG8uNx18YWqlbmlJ3lvIERqoWdsasXjx02HS3ykHZ-2CXsFk0i_FgEGsgPsd-es5MWu0wXv3PO3u7vXlePxfr54Wm1XBdeSjUUCoUlI0EpIQLxyqCWouKopFdeW9NYaLRtvaS2EkL7UGOQtTZaKKDgUc7Z9eHvO3buK8VPTN-ux-gel2s33QAqzq2Sez5mxSHrU59zovYP4OAmJW7jJiVuUuLAjKwYodsDRGOLfaTkso-09RRiGqu60Mf_8B8T-WgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable structural break detection</title><source>Access via ScienceDirect (Elsevier)</source><creator>Éltetö, T. ; Hansen, N. ; Germain-Renaud, C. ; Bondon, P.</creator><creatorcontrib>Éltetö, T. ; Hansen, N. ; Germain-Renaud, C. ; Bondon, P.</creatorcontrib><description>[Display omitted]
► The context of the paper is the analysis of large volume of non-stationary data. ► We fit a piecewise AR model to the analysed time series using the MDL principle. ► The existing method AutoPARM scales inefficiently with the data volume. ► We propose an alternative optimisation strategy using CMA-ES for the fitting. ► Our method achieves at least one order of magnitude performance improvement.
This paper deals with a statistical model fitting procedure for non-stationary time series. This procedure selects the parameters of a piecewise autoregressive model using the Minimum Description Length principle. The existing chromosome representation of the piecewise autoregressive model and its corresponding optimisation algorithm are improved. First, we show that our proposed chromosome representation better captures the intrinsic properties of the piecewise autoregressive model. Second, we apply an optimisation algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), with which our setup converges faster to the optimal fit. Our proposed method achieves at least one order of magnitude performance improvement compared to the existing solution.</description><identifier>ISSN: 1568-4946</identifier><identifier>EISSN: 1872-9681</identifier><identifier>DOI: 10.1016/j.asoc.2012.06.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Covariance Matrix Adaptation ; Evolution Strategy ; Machine Learning ; Minimum Description Length principle</subject><ispartof>Applied soft computing, 2012-11, Vol.12 (11), p.3408-3420</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4a28e6304422de176a53271a43c4c586b80b58fc3ef7225cd9ad39565240edca3</citedby><cites>FETCH-LOGICAL-c334t-4a28e6304422de176a53271a43c4c586b80b58fc3ef7225cd9ad39565240edca3</cites><orcidid>0000-0002-5158-7337 ; 0000-0001-7788-4906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asoc.2012.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00711843$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Éltetö, T.</creatorcontrib><creatorcontrib>Hansen, N.</creatorcontrib><creatorcontrib>Germain-Renaud, C.</creatorcontrib><creatorcontrib>Bondon, P.</creatorcontrib><title>Scalable structural break detection</title><title>Applied soft computing</title><description>[Display omitted]
► The context of the paper is the analysis of large volume of non-stationary data. ► We fit a piecewise AR model to the analysed time series using the MDL principle. ► The existing method AutoPARM scales inefficiently with the data volume. ► We propose an alternative optimisation strategy using CMA-ES for the fitting. ► Our method achieves at least one order of magnitude performance improvement.
This paper deals with a statistical model fitting procedure for non-stationary time series. This procedure selects the parameters of a piecewise autoregressive model using the Minimum Description Length principle. The existing chromosome representation of the piecewise autoregressive model and its corresponding optimisation algorithm are improved. First, we show that our proposed chromosome representation better captures the intrinsic properties of the piecewise autoregressive model. Second, we apply an optimisation algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), with which our setup converges faster to the optimal fit. Our proposed method achieves at least one order of magnitude performance improvement compared to the existing solution.</description><subject>Computer Science</subject><subject>Covariance Matrix Adaptation</subject><subject>Evolution Strategy</subject><subject>Machine Learning</subject><subject>Minimum Description Length principle</subject><issn>1568-4946</issn><issn>1872-9681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeCJw-Js5_ZgJdS_IKCB_W8THYnuDU2spsW_PcmVDx6mmF4n4H3YeySQ8mBm5tNibn3pQAuSjAlgDhiM24rUdTG8uNx18YWqlbmlJ3lvIERqoWdsasXjx02HS3ykHZ-2CXsFk0i_FgEGsgPsd-es5MWu0wXv3PO3u7vXlePxfr54Wm1XBdeSjUUCoUlI0EpIQLxyqCWouKopFdeW9NYaLRtvaS2EkL7UGOQtTZaKKDgUc7Z9eHvO3buK8VPTN-ux-gel2s33QAqzq2Sez5mxSHrU59zovYP4OAmJW7jJiVuUuLAjKwYodsDRGOLfaTkso-09RRiGqu60Mf_8B8T-WgA</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Éltetö, T.</creator><creator>Hansen, N.</creator><creator>Germain-Renaud, C.</creator><creator>Bondon, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5158-7337</orcidid><orcidid>https://orcid.org/0000-0001-7788-4906</orcidid></search><sort><creationdate>20121101</creationdate><title>Scalable structural break detection</title><author>Éltetö, T. ; Hansen, N. ; Germain-Renaud, C. ; Bondon, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4a28e6304422de176a53271a43c4c586b80b58fc3ef7225cd9ad39565240edca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer Science</topic><topic>Covariance Matrix Adaptation</topic><topic>Evolution Strategy</topic><topic>Machine Learning</topic><topic>Minimum Description Length principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Éltetö, T.</creatorcontrib><creatorcontrib>Hansen, N.</creatorcontrib><creatorcontrib>Germain-Renaud, C.</creatorcontrib><creatorcontrib>Bondon, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied soft computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Éltetö, T.</au><au>Hansen, N.</au><au>Germain-Renaud, C.</au><au>Bondon, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable structural break detection</atitle><jtitle>Applied soft computing</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>12</volume><issue>11</issue><spage>3408</spage><epage>3420</epage><pages>3408-3420</pages><issn>1568-4946</issn><eissn>1872-9681</eissn><abstract>[Display omitted]
► The context of the paper is the analysis of large volume of non-stationary data. ► We fit a piecewise AR model to the analysed time series using the MDL principle. ► The existing method AutoPARM scales inefficiently with the data volume. ► We propose an alternative optimisation strategy using CMA-ES for the fitting. ► Our method achieves at least one order of magnitude performance improvement.
This paper deals with a statistical model fitting procedure for non-stationary time series. This procedure selects the parameters of a piecewise autoregressive model using the Minimum Description Length principle. The existing chromosome representation of the piecewise autoregressive model and its corresponding optimisation algorithm are improved. First, we show that our proposed chromosome representation better captures the intrinsic properties of the piecewise autoregressive model. Second, we apply an optimisation algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), with which our setup converges faster to the optimal fit. Our proposed method achieves at least one order of magnitude performance improvement compared to the existing solution.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.asoc.2012.06.002</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5158-7337</orcidid><orcidid>https://orcid.org/0000-0001-7788-4906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-4946 |
ispartof | Applied soft computing, 2012-11, Vol.12 (11), p.3408-3420 |
issn | 1568-4946 1872-9681 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00711843v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computer Science Covariance Matrix Adaptation Evolution Strategy Machine Learning Minimum Description Length principle |
title | Scalable structural break detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20structural%20break%20detection&rft.jtitle=Applied%20soft%20computing&rft.au=%C3%89ltet%C3%B6,%20T.&rft.date=2012-11-01&rft.volume=12&rft.issue=11&rft.spage=3408&rft.epage=3420&rft.pages=3408-3420&rft.issn=1568-4946&rft.eissn=1872-9681&rft_id=info:doi/10.1016/j.asoc.2012.06.002&rft_dat=%3Celsevier_hal_p%3ES1568494612002694%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1568494612002694&rfr_iscdi=true |