Downscaling of fracture energy during brittle creep experiments

We present mode 1 brittle creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time‐dependent failure and intermittent microscopic stress‐dependent processes. We find the large‐scale response of slow‐prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2011-08, Vol.116 (B8), p.n/a, Article B08215
Hauptverfasser: Lengliné, O., Schmittbuhl, J., Elkhoury, J. E., Ampuero, J.-P., Toussaint, R., Måløy, K. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present mode 1 brittle creep fracture experiments along fracture surfaces that contain strength heterogeneities. Our observations provide a link between smooth macroscopic time‐dependent failure and intermittent microscopic stress‐dependent processes. We find the large‐scale response of slow‐propagating subcritical cracks to be well described by an Arrhenius law that relates the fracture speed to the energy release rate. At the microscopic scale, high‐resolution optical imaging of the transparent material used (PMMA) allows detailed description of the fracture front. This reveals a local competition between subcritical and critical propagation (pseudo stick‐slip front advances) independently of loading rates. Moreover, we show that the local geometry of the crack front is self‐affine and the local crack front velocity is power law distributed. We estimate the local fracture energy distribution by combining high‐resolution measurements of the crack front geometry and an elastic line fracture model. We show that the average local fracture energy is significantly larger than the value derived from a macroscopic energy balance. This suggests that homogenization of the fracture energy is not straightforward and should be taken cautiously. Finally, we discuss the implications of our results in the context of fault mechanics. Key Points Direct observation of brittle creep crack propagation Quantification of the fracture energy over a wide range of scales System size fracture energy smaller than averaged fracture energy distribution
ISSN:0148-0227
2169-9313
2156-2202
2169-9356
DOI:10.1029/2010JB008059